
Abstract

We present a new way of dynamically growing

and breeding structures in 3D space through

swarming agents. Different agent types and the

way they evolve over time is specified by a swarm

grammar similar to Lindenmayer systems. We

expand common L-system string interpretation

from a single turtle to a multitude of turtles which

behave like a swarm. By describing swarm agents

within the framework of formal grammars, we

build a bridge from symbolic production systems

(rewrite systems) to three-dimensional real-time

construction procedures that are executed by re-

active and interacting agents which move in simu-

lated physical 3D spaces.

We introduce constructor agents, their formal rep-

resentation in swarm grammars and demonstrate

by examples how (1) the swarm rules, (2) the

agent parameters and (3) the environment can

influence the actual construction and growth

processes that are initiated and directed by the

swarms.

In order to facilitate exploration of a large variety

of swarm grammars, we apply interactive evolu-

tionary design methods to create swarm grammar

sculptures and 3D structures.

Keywords: swarms, swarm intelligence, swarm

grammars, design of 3D structures, generative

design, rewriting systems, Lindenmayer sys-

tems, agent-based design, multi-agent system.

1. Introduction

Looking at life around us, we are immersed in

a natural world of massively parallel, decen-

tralized biological ‘information processing’

systems; a world that exhibits fascinating

emergent properties in many ways due to de-

velopmental processes, growth, and self-

organization. In fact, our very own bodies are

the result of emergent patterns, as the devel-

opment of any multi-cellular organism is de-

termined by localized interactions among an

enormous number of cells – carefully orches-

trated by enzymes, signaling proteins and

other molecular ‘agents.’ What is particularly

striking about these highly distributed devel-

opmental processes is that a centralized con-

trol agency is completely missing. This is also

the case for many other biological systems,

such as termites which build their nests with-

out an architect that draws a plan, or brain

cells evolving into a complex ‘mind machine’

without an explicit blueprint of a network

layout.

Obviously, being able to understand,

build and harness the emergent properties of

such systems would be highly beneficial for

1 of 16

Swarm grammars: growing dynamic

structures in 3D agent spaces

Christian Jacob and Sebastian von Mammen

University of Calgary, Calgary, Canada

cjacob@ucalgary.ca, s.vonmammen@ucalgary.ca

Digital Creativity, Vol. 1(18), 2007

mailto:cjacob@ucalgary.ca
mailto:cjacob@ucalgary.ca
mailto:s.vonmammen@ucalgary.ca
mailto:s.vonmammen@ucalgary.ca

helping us to create a new generation of de-

sign and manufacturing techniques. Designers

of complex systems could utilize their adapt-

ability and robustness. Such systems would

construct themselves, through self-

organization. However, system designers and

programmers are facing an enormous chal-

lenge. How can we actually build highly dis-

tributed systems of which we have only lim-

ited understanding? We have to invent new

ways of building, maintaining, and control-

ling such systems.

The Swarm Grammars we are going to

present here provide a first step towards a

new methodology for the creation and design

of 3D forms and shapes. With swarm gram-

mars (SGs) we capture growth processes that

result from the interactions of swarming

agents while they create branching structures

in 3-dimensional space.

Generative representations of design

patterns for 3D forms, such as Lindenmayer

systems (L-systems), have been used very

successfully to model growth processes.

Originally, L-systems were developed to cap-

ture growth in bacterial and yeast cells (Lin-

denmayer 1968; Rozenberg & Lindenmayer

1986). Soon L-systems were investigated in

the context of formal languages (Rozenberg

& Salomaa 1980; Rozenberg et al. 1986).

Capturing the developmental processes that

lead to branching patterns in plants became

another major area of study involving L-

system grammars (Prusinkiewicz & Hanan

1989; Prusinkiewicz & Lindenmayer 1990;

Hanan 1992; Prusinkiewicz 2004). Other

models of branching structures in dendritic

growth of neurons (Hamilton 1994) and in

arteries (Zanis 2001) have used L-systems as

well.

More recently, generative approaches

using L-systems have explored architectural

designs (Coates 1999; Hemberg 2001; Jack-

son 2001), designs for modular robots

(Hornby et al. 2001; Hornby & Pollack

2001a), efficiently encoded physical designs

(Hornby & Pollack 2001b), evolvable hard-

ware (Haddow 2001) and solutions in compu-

tational mechanics (Alber et al. 2002).

In L-systems, a formal grammar speci-

fies rules that capture the step-by-step growth

process by rewriting a string of symbols,

which are subsequently translated into

graphical objects through a turtle interpreta-

tion. A turtle is a virtual drawing device that

is navigated in 3D space following the sym-

bolic commands of the string. In swarm

grammars we substitute the turtle interpreta-

tion by a swarm interpretation. Instead of a

single turtle following the path described by

an L-system, a swarm of ‘turtle agents’ inter-

pret the grammar rules. This simple expan-

sion from one interpreting turtle to a swarm

reveals new dimensions in performance, dy-

namics and complexity of the resulting struc-

tures. The swarm agents are not only con-

trolled by the grammar rules, but have the po-

tential to interact among each other and with

their environment. In fact, collision resolution

among branching structures can be accounted

for quite easily through parallel swarm-based

turtle interpretation. This does not only lead

to more interesting designs emerging from the

swarm’s dynamics, but also engages the de-

signer in an interactive dialog with the crea-

tive process, by introducing alternate swarms

or other static and dynamic environmental

components that can influence a swarm’s de-

velopmental processes.

Describing the swarm grammar ap-

proach in more detail, we proceed in the fol-

lowing manner: In Section 2 we define swarm

grammar systems and their associated build-

ing agents. Examples of building processes

implicitly described by swarm grammars are

illustrated in Section 3. Here we also show

2 of 16

which effects the rewrite rules and the agent

parameters have on the actual swarm-driven

building process. In Section 4 we show how

swarm grammar agents encounter other enti-

ties within their environment and how these

interactions influence the building dynamics

and the resulting compositions. We describe

the exploration of new swarm grammar rules

and agent parameters through an evolutionary

system in Section 5. A brief comparison to L-

systems—with respect to parallel turtle inter-

pretation, in particular—is presented in Sec-

tion 6. A short outline of future expansion

possibilities of swarm grammar systems in

Section 7 concludes this contribution.

Figure 1. Example of a swarm grammar system

with two rewrite rules, a start symbol, and a

set of attributes for agent types A and B
(see Section 2.2 for more details).

2. Swarm Grammar System

In this section we describe the two key parts

of a swarm grammar system: (1) a set of re-

write rules, which determine the composition

of agent types over time, and (2) a set of

agent specifications, which define agent type

specific parameters that govern the agents’

interactions.

2.1. The Swarm Grammar

A swarm grammar system SG = (SL, !) con-

sists of a rewrite system SL = (", P) and a set

of agents ! = {a1, a2, ..., an}. The rewrite sys-

tem SL is an L-system with axiom " and pro-

duction rules P (Jacob 2001). In the simplest

form of context-free 0L-systems, each rule

has the form p ! s, where p is a single sym-

bol over an alphabet !, and s is either the

empty symbol (") or a word over !. Each

agent ai is characterized by a set of attributes,

which can include its geometrical shape,

color, mass, vision range, radius of perception

and other parameters such as separation or

cohesion urges that determine its behavior

while encountering its environment. Figure 1

gives an example of such a swarm grammar

with two types of agents. The rewriting proc-

ess begins with start symbol A. In the first

iteration of applying any matching rules, only

the first rule is applicable, hence A is rewrit-

ten into AB. At the next iteration, both rules

apply: A is rewritten into AB, and B is rewrit-

ten into A. The resulting string is ABA. Fur-

ther rewriting will result in the following

word sequence:

t0: # A

t1: # AB

t2: # ABA

t3: # ABAAB

t4: # ABAABABA

...

Here each ti represents a decision point1

where an agent triggers the application of the

next SL-system iteration with the string de-

scribing the current composition of the

3 of 16

1 In the following examples a decision point coincides with the iteration number of the SL-system.

swarm. In the example above we have five

type-A and three type-B swarm agents after

decision point t4. Figure 2 shows the first

steps of the swarm interpretation in 3D space.

The single type-A agent starts its vertical as-

cent, building a cylindrical shape on its way.

At decision point t1 agent A is replaced by a

new agent of type A and a type-B agent. A-

agents are the only ones that move, whereas

B-agents build a bent branch tip and then stop

(Fig. 2(c)). At time point t2 agent A is re-

placed by agents of type A and B, and the

former B-type agent is replaced by an A-

agent. Figure 2(f) illustrates the branching

structure resulting after a few more iterations.

2.2. The Swarm Agents

In our demonstrations, a swarm agent is rep-

resented as a pyramid pointing in the direc-

tion of its velocity vector (Fig. 3). Each

agent’s awareness of other flock mates is de-

termined by its field of perception, which is

defined by a radius and an angle as illustrated

in Figure 3(a). An agent will only interact

with those agents that are within its field of

perception. We call these agents its neighbors.

Both the radius and angle of the field of vi-

sion are part of an agent’s attribute set.

4 of 16

Figure 2. Step-by-step illustration of swarm interpretation in 3D space (see text for details).

(d) t2: ABA (e) t3: ABAAB (f) t > t3

(c) t1 < t < t2(b) t1: AB(a) t0: A

(a) Agent perception (b) Cohesion

(c) Alignment (d) Separation

Agent Ai

Figure 3. Basic interactions with other agents.

The velocity vector V of an agent is up-

dated according to the following formula:

V = c1 V1(d) + c2 V2 + c3 V3 + c4 V4 + c5 V5.

Here we follow the simple boids model of

interaction rules (Reynolds 1987), where an

agent changes direction and adjusts its speed

according to three influential factors (Fig.

3(b)-(d)):

• separation (V1(d)): steer away from the

collective of neighbors if the minimum

distance is smaller than a crowding

value d (Kwong 2003).

• cohesion (V2): move toward the average

position of local flock mates, and

• alignment (V3): reorientation towards

the average direction of its neighbors.

Vector V4 points to the center of the

simulated 3D world and V5 represents a ran-

dom unit-length vector to add some noise.

The weights c1, ..., c5 determine how much

influence each factor has on the agent. Each

of these ‘urges’ is specified for an agent type

as part of a swarm grammar. In Figure 1, for

example, separation and wander urge corre-

spond to weights c4 and c5, respectively.

An agent stops applying the SL-system

rules when it runs out of energy, which is

passed on from one generation of agents to

the next. The energy level also influences cer-

tain properties of the built 3D structures such

as, for example, the radius of the cylinders.

In summary, an SL-grammar repeatedly

defines the successors of an agent. Predefined

parameters determine when a construction

element is built, when a production rule is

applied, how much energy is lost through the

creation of a construction element, and when

the agent runs out of energy and thus is un-

able to reproduce.

3. SG Agents in Action

Now let us have a look at the effects that

emerge when we modify the set of production

rules and the agent parameters that determine

their flocking behaviors. The following ex-

amples will demonstrate the high degree of

interaction dynamics and the resulting variety

of outcomes to be expected from swarm

grammar systems that build 3D structures.

3.1. Changing the SL-system Rules

We first discuss a small sample of tree-like

structures that result from various sets of pro-

duction rules. In order to illustrate some of

the basic effects, we use only a fairly limited

number of swarm agents.

Agent
Type

Separation
 c1

Random
c5

A 0 0.01

B 1.7 0.01

C 13.7 0

Table 1. Flocking parameters of agent types A, B,

and C. All other parameter weights (c2, c3,

and c4) are set to zero.

5 of 16

6 of 16

Figure 4. Examples of branching structures created from agent interactions governed by different swarm

grammars.

(d) Agents: 50

SLd = (A, {A ! BBBABBB, B ! λ})

(e) Agents: 86

SLe = (A, {A ! BBBABBB, B ! C, C ! λ})

(b) Agents: 64

SLb = (A, {A ! BAB})

(a) Agents: 87

SLa = (A, {A ! AB, B ! A})

(c) Agents: 407

SLc = (A, {A ! ABA, B !A})

Consider three types of swarm agents—

A, B, and C—with parameters as in Table 1,

which describe the weights of their separation

urge (c1) and random movement (c5). The re-

maining behavior parameters (c2, c3, c4, d) are

set to zero. Initially, all agents are oriented

upwards, hence will move towards the top

(increasing their y coordinate).

The interpretation of swarm grammar

SLa = ($ = A, P = {A ! AB, B ! A}) results

in a tree-like structure with sparse branches,

which makes it easy to analyze (Fig. 4(a)).

The ‘natural’ look of the overall tree can be

attributed to the small degree of random

movements of both types of agents. A-type

agents move upwards with no urge to sepa-

rate, whereas any B-agent moves away from

agents of type A, due to its urge for separation

(c1 = 1.7). Hence the arrangement of the

branches is mainly a consequence of the

agents’ interactions.

With the even simpler grammar SLc, the

style of the tree looks similar to the structure

from SLa (Fig. 4(b)), where B-agents only

place stationary building blocks and then

stop.

A different branching pattern is shown

in Figure 4(c), where a slightly larger number

of A-agents is generated at each decision

point by adding an extra A-type agent com-

pared to SLa. This leads to bursting agent re-

productions, a more expansive growth of the

branches, and the formation of a denser can-

opy. The small green objects at the branch

tips represent the swarm agents that are still

to finish their next building step.

 However, an increased number of gen-

erated agents does not always mean that the

complexity of the emerging structures in-

creases as well. The SL-system in Figure 4(d)

produces a large number of agents, but the

outcome is quite simple, as type-B agents

only get the chance to establish a short side

branch and are removed before the next build-

ing step.

In Figure 4(e), a third agent type, C, is

added, which has a very high separation urge

with no random component added (Table 1).

As C-agents are also oriented vertically at

their time of creation, they are responsible for

the vertical branch endings.

3.2. Changing the Agent Parameters

Instead of changing the SL-system rules, we

are now going to modify the agents’ flocking

parameters and look at the consequences with

regard to the generated 3D structures. We

start from a swarm grammar with a single

rule that enables forked branching:

SGsimple = (" = A, P = {A ! AA}, %).

At each iteration step, one type-A agent

reproduces into two A-agents. As there is only

one type of agents, they all share the same

flocking parameters listed in Table 2. These

settings were reported by Kwong (2003) who

investigated swarm interaction patterns and

their evolution in more detail. Kwong discov-

ered a range of parameter settings, where the

agents displayed formations such as figure

eights, rings and other choreographed ar-

rangements (see also Kwong & Jacob, 2004).

Figures 5(a), (b), and (c) show snapshots of a

line formation, a ring formation, and a loose

cluster emerging from the parameter sets (1),

(2), and (3) in Table 2, respectively. Here the

additional parameter crowding is introduced.

If the distance to a neighbor is within crowd-

ing range, the separation urge is in effect.

This allows an agent to influence only a sub-

set of its actual neighbors. The parameters

amax and vmax denote the agents’ maximum

allowed acceleration and velocity, respec-

7 of 16

tively. No agent can fly faster or accelerate

faster than specified by these limits.

(1) (2) (3) (4)

Separation (c1) 1 5 5 2

Cohesion (c2) 10 8 0 3

Alignment (c3) 5 7 2 7

World Ctr (c4) 14 8 7 6

Random (c5) 1 5 6 3

Crowding 0.14 0.14 0.23 0.01

amax
39 38 40 40

vmax
9 13 6 6

Table 2. Flocking parameter settings that lead to

the following behaviors: (1) large ring for-

mation, (2) line formation, (3) a loose sta-

tionary cluster, and (4) a figure eight.

The bottom images in Figure 5 show

the structures that result from using the same

types of agents to interpret swarm grammar

SGsimple as described above. The building

blocks of the depicted structures bear differ-

ent colors (or grey levels) so that their com-

position over time is visualized. Lighter-

colored building blocks are built earlier. The

structure in Figure 5(d), for example, was

built from left to right, with intermittent

changes of the swarm’s direction. This con-

struction does not seem to involve any

8 of 16

Figure 5. Choreographed swarms are employed for building 3D sculptures. Top: snapshots of choreo-

graphed flocking behaviors; (a) line formation, (b) ring formation, (c) loose cluster formation. Bot-

tom: the structures built by the corresponding swarm grammar agents. Lighter (darker) colors of

building blocks indicate earlier (later) addition during the building process (flocking parameters ac-

cording to Table 2). Videos of these choreographed swarms are available at:

http://www.swarm-design.org/SwarmGrammars/movies/.

(d) (e) (f)

(a) (b) (c)

http://www.swarm-design.org/SG/videos/
http://www.swarm-design.org/SG/videos/

branching due to agent separation urges. The

smooth bands originate from the agents’ al-

most perfect flight coordination while con-

structing very similar, almost parallel fibers.

Looking a little closer, however, reveals a

small gap at a U-turn slightly off the center at

the top right of the image (see Fig. 5(d) inset).

The structure in Figure 5(e) evolves

spherically from a center point. The large ring

flocking behavior of the swarm contributes to

a spiky and impulsive character of this grow-

ing ‘sculpture’.

Our third example of combining cho-

reographic swarms with swarm grammars in-

volves flocking behavior where the agents

form loose, temporary clusters, then disperse

and regroup to form new clusters at a differ-

ent location. This behavior is induced by the

parameters in Table 2(3). The formation of

one of these clusters is depicted in Figure

5(c). Looking at the corresponding structure

built by the swarm grammar agents, the sites

of cluster formation are clearly identifiable as

‘knots’. Since the flocking parameters allow

for a rather dynamic flight, single agents can

leave one cluster and join another one at a

different location.

4. Interactions with the Envi-

ronment

In this section we present three different

kinds of interaction with both static and dy-

namic elements within the environment. Table

3 lists the parameters for the six types of

agents we are going to employ.

D E F, G, H I

Separation 0 10 80 33

Cohesion 0 0 0 10

Alignment 0 0 10 11

World Ctr 10 1 1 5

Random 10 2 4 0

Crowding 0 10 10 1

9 of 16

Figure 6. Swarm grammar agents interacting with objects in their environment: (a) a static wall constricts

agents from reaching a goal point behind it; (b) agents tend towards a goal point that orbits above

the construction center. Videos of these environmental interactions are available at:

http://www.swarm-design.org/SwarmGrammars/movies/.

(a) (b)

http://www.swarm-design.org/SG/videos/
http://www.swarm-design.org/SG/videos/

D E F, G, H I

amax
30 30 10 27

vmax
2 5 4 2

Table 3. Parameter settings for agent types D, E,

F, G, H, and I.

4.1. Swarm—Object Interaction

Figure 6(a) shows an example of agents

interacting with non-moving objects in their

environment. Agents of types F, G and H tend

to move towards the world center, which, in

this case, is located beyond the wall and far

up in the sky (like a sun). Whenever a swarm

agent tries to penetrate the wall, it bounces

back as its velocity vector’s x- and z-

coordinates are reversed. This implements a

simple collision detection with static objects.

As soon as the swarm structure has outgrown

the wall, the agents are no more prevented

from moving towards their destination.

As soon as the world center becomes

dynamic, its movement pattern is reflected in

the construction of those swarm agents that

tend towards it. In Figure 6(b) the world cen-

ter orbits far up in the sky and around the y-

axis of the simulation. Both agent types, D

and E, are attracted towards the moving world

centre. Consequently, the structure they build

reflects an upward, twisted growth pattern. In

order to better recognize the constructors, D-

type agents are assigned a very light and

agents of type E a darker color. As D-agents

do not feel the urge to separate from their

neighbors, they almost perfectly drive up-

wards around the y-axis. The constructions

from agents of type E outgrow the ones from

the D-type since E-agents are allowed a

greater maximum velocity (compare Table 3).

10 of 16

(a) (b)

Figure 7. Constructing swarms interacting with another flock of agents. (a) Resulting construction with no

other swarm present; (b) the same swarm!s movements are influenced by another (non-

constructing) swarm of agents shown in blue. Videos of these swarm constructions are available

at: http://www.swarm-design.org/SwarmGrammars/movies/.

http://www.swarm-design.org/SG/videos/
http://www.swarm-design.org/SG/videos/

4.2. Swarm—Swarm Interaction

In the previous examples, the swarm grammar

agents were interacting with either static or

dynamic objects. Now, consider a second

swarm that is not part of a swarm grammar,

but exhibits flocking behavior within the en-

vironment. Both swarms influence each other

as soon as some of their individuals enter the

field of vision of the other swarm agents.

These swarm-swarm interactions are

hard to capture in a screenshot. However, the

swarm grammar agents witness the exertion

of influence from the other swarm by leaving

a trace in the 3D construction space.

We look at another simplistic swarm

grammar:

SGstraight-up = (" = I, P = {I ! I}, !).

 Figure 7(a) shows the structure that is built

by this swarm grammar, with no elements in-

teracting with the swarm agents. The move-

ments of the type-I agents are not driven by

any randomness, so that any deviation from

the presented structure has to be seen as the

result of other external factors. The agent pa-

rameter settings are listed in Table 3.

Figure 7(b) displays a scene where the

interaction between both flocking and swarm

grammar agents is still in progress. The blue

pyramidal shapes represent (non-building)

agents that organize their flight in a figure

eight formation (parameters according to Ta-

ble 3 and taken from Jacob & Kwong 2004).

As a result of the interactions between the

building swarm and the flocking swarm, a

completely different structure emerges. When

one observes this construction during run

time, the influence of the swarm grammar

agent on the other swarm is fascinating to

watch: as long as the swarm grammar agent is

present, there is a very high probability of the

other flock-mates to interact with it, as the

figure eight formation usually occurs around

the world center.

5. Swarm Grammar Evolution

We use an extension of Inspirica (Kwong

2003), one of our evolutionary design tools,

to explore the potential of generating swarm

grammar systems that exhibit intriguing con-

structions. As illustrated in Figure 8, a collec-

tion of swarm builder simulations is simulta-

neously presented to the user. Each window

shows the interpretation of different swarm

grammar rules and with different agent pa-

rameters. All windows display the construc-

tion process as it occurs. All designs are true

objects in 3D space, hence can be rotated,

zoomed and inspected in various ways. After

assessment of the presented structures, the

swarm designer assigns fitness values be-

tween 0 and 10 to each solution.

The rewrite rules and agent parameters

are represented as symbolic expressions, so

that genetic programming (GP) can be used to

evolve both the set of rules as well as any

agent attributes (Jacob 2001). For the exam-

ples we present here, only context-free rules

with a maximum string length of three (|s| =

3) are applied. We allow at most five rules per

SG-genotype. GP mutation and crossover are

the only genetic operators.

As this is our first swarm grammar pro-

totype, the results presented here are still

simplistic, but they already reveal the poten-

tial of form generation through SG systems.

Figures 9 and 10 show selected examples of

such evolved structures. As developmental

rewrite systems are usually rather sensitive to

changes in the genotypes—which can result

in vastly different growth structures and de-

velopmental processes—we have limited our

grammars to only three symbols. In the Evol-

11 of 16

vica system (Jacob 2001) we have used filters

on typed genetic operators to limit variability

on L-system genotypes, which can be applied

to swarm grammars as well. However, further

investigations will be necessary to explore

different encodings and genotype-phenotype

mappings for swarm grammars.

6. Discussion

The interpretation of an expanded L-system

string by a single turtle has always been one

of the major constraints of L-systems.

Whereas the rewrite rules are applied in paral-

lel on a single string (i.e., any matching rule

is applied), the interpretation of the string by

a single turtle serializes the actual drawing or

creation process of the 3-dimensional struc-

tures. Simulating the growing branches of a

tree, for example, this creates major issues as

the branch tips are not created in a parallel

fashion. Hence, detection of branch collisions

and their resolution has to be dealt with after

collisions have already occurred (Mech &

Prusinkiewicz 1996). Within the swarm

grammar approach, these problems do not

arise any more, as the swarm agents act as

independent, interacting units which resolve

collisions on their own. Hence, swarm gram-

mars combine the ease of specification of a

grammar system with the interpretive power

of a multitude of building devices (extended

‘turtles’) in 3D spaces.

Organizing sets of swarm agents

through deterministic, context-free grammars

has enabled us to transfer the notion of con-

nectivity – which is inherent in rewriting sys-

tems – onto structures that are created by co-

ordinated movements among swarm agents.

The underlying grammar has a profound ef-

fect on the resulting topology of the built

structures, whereas the employed swarms and

their characteristics largely determine the dy-

namic composition process.

12 of 16

Figure 8. The interactive evolutionary design interface used to explore swarm grammar rules, agent pa-

rameters, and their corresponding 3D structures.

7. Swarm Grammars: What

Next?

There is a wide range of possibilities to ex-

tend the proposed swarm grammar approach.

Here are a few of these expansions we are

currently beginning to explore. As SG-

systems are natural extensions of Linden-

mayer grammars, all variants of L-systems

are applicable as well, such as: context-

sensitive production rules, non-deterministic

or probabilistic rules, map SG-systems, and

table SG-systems. Prusinkiewicz & Linden-

mayer (1991) give a good overview of these

L-system variants. How far these extended

SG-systems will expand the variety of con-

ceivable designs remains to be seen.

Similar arguments apply to the agent

side of SG-systems. Not only can interaction

parameters be changed, but one may define

13 of 16

Figure 9. Collage of evolved designs generated from swarm grammar systems.

agents with specific (simulated) physical

properties (limited speed, mass, vision, etc),

or constrain their interaction spaces (e.g.,

termites that build nests, but cannot fly). Evo-

lutionary design systems—such as Evolvica

(Jacob 2001) and Inspirica (Kwong 2003)—

will certainly help us to unleash the still

largely hidden powers of generative, dynamic

design through swarm grammar systems.

Software

Sample code of our swarm grammar systems

and other swarm-based simulations, which

our Evolutionary & Swarm Design Labora-

tory is working on, are available at

http://www.swarm-design.org.

Acknowledgement

Our swarm grammar systems are imple-

mented in BREVE, a simulation package for

modeling decentralized, agent-based systems

in 3-dimensional space (Spector & Klein

2002). BREVE was designed and is still being

further developed by Jon Klein, whom we

have to thank for his continuous support and

for providing such an excellent research tool

for our swarm-based investigations.

References

Alber, R., Rudolph, S., & Kröplin, B. (2002). On

Formal Languages in Design Generation and

Evolution. 5th World Congress on Computational

Mechanics (WCCM V), Vienna, Austria.

Coates, P., Broughton, T., & Jackson, H. (1999).

Exploring Three-Dimensional Design Worlds us-

ing Lindenmayer Systems and Genetic Program-

ming. In P. Bentley (Ed.), Evolutionary Design by

Computers. (pp. 323-341). San Francisco, CA,

USA: Morgan Kaufmann.

Haddow, P. C., Tufte, G., & van Remortel, P.

(2001). Shrinking the Genotype: L-systems for

EHW? Evolvable Systems: From Biology to

Hardware: 4th International Conference, Tokyo,

Japan.

Hamilton, P. (1994). Computing Dendritic

Growth. In R. Paton (Ed.), Computing with Bio-

logical Metaphors. (pp. 86-102). London Chap-

man & Hall.

Hanan, J. S. (1992). Parametric L-systems and

their application to the modelling and visualiza-

tion of plants. Ph.D. Thesis. Department of Com-

puter Science, University of Regina.

Hemberg, M. (2001). GENR8 - A Design Tool for

Surface Generation. M.Sc. Engineering Physics

Thesis. Department of Physical Resource Theory,

MIT, Boston, Ma, USA.

Henry, Kwong (2003). Evolutionary Design of

Implicit Surfaces and Swarm Dynamics. MSc

Thesis. Department of Computer Science, Univer-

sity of Calgary, Calgary, AB, Canada.

Hornby, G., Lipson, H., & Pollack, J. (2001).

Evolution of generative design systems for modu-

lar physical robots. IEEE International Confer-

ence on Robotics and Automation (ICRA), Seoul,

Korea.

Hornby, G. & Pollack, J. B. (2001a). Evolving L-

systems to generate virtual creatures. Computers

& Graphics, 25, 1041-1048.

Hornby, G., & Pollack, J. (2001b). The advan-

tages of generative grammatical encodings for

physical design. Congress on Evolutionary Com-

putation, Seoul, South Korea.

Jackson, H. (2001). Toward a Symbiotic Coevolu-

tionary Approach to Architecture. In D. W. Corne,

& P. Bentley (Eds.), Creative Evolutionary Sys-

tems. (pp. 299-314). San Francisco, CA, USA:

Morgan Kaufmann.

Jacob, C. (1994). Genetic L-System Program-

ming. PPSN III, Parallel Problem Solving from

Nature.

14 of 16

http://www.swarm-design.org
http://www.swarm-design.org

Jacob, C. (2001). Illustrating Evolutionary Com-

putation with Mathematica. San Francisco, CA,

USA: Morgan Kaufmann.

Kitano, H. (1990). Designing Neural Networks

Using Genetic Algorithms with Graph Generation

System. Complex Systems, 4(4).

Kwong, H., & Jacob, C. (2003). Evolutionary Ex-

ploration of Dynamic Swarm Behaviour. Congress

on Evolutionary Computation, Canberra, Austra-

lia.

Lindenmayer, A. (1968). Mathematical models for

cellular interaction in development, Parts I and

II. Journal of Theoretical Biology, 18, 280-315.

Mech, R., & Prusinkiewicz, P. (1996). Visual

models of plants interacting with their environ-

ment. 23rd Annual Conference on Computer

Graphics and Interactive Techniques, New York,

NY, USA.

Prusinkiewicz, P. (2004). Art and science for life:

Designing and growing virtual plants with L-

systems. Acta Horticulturae, 630, 15-28.

Prusinkiewicz, P., & Hanan, J. (1989). Linden-

mayer Systems, Fractals, and Plants (SIAM/

SIREV 33(2)). New York: Springer.

Prusinkiewicz, P., & Lindenmayer, A. (1990). The

Algorithmic Beauty of Plants. New York, NY,

USA: Springer.

Reynolds, C. W. (1987). Flocks, herds and

schools: A distributed behavioral model. Int. Con-

ference on Computer Graphics and Interactive

Techniques, SIGGRAPH, Anaheim, USA.

Rozenberg, G., & Salomaa, A. (1980). The

Mathematical Theory of L-Systems. New York, NY,

USA: Academic Press.

Rozenberg, G., Salomaa, A., & Lindenmayer, A.

(1986). The Book of L. Berlin ; New York:

Springer-Verlag.

Spector, L., & Klein, J. (2002). Evolutionary Dy-

namics Discovered via Visualization in the

BREVE Simulation Environment. 8th Interna-

tional Conference on the Simulation and Synthesis

of Living Systems, Sydney, Australia.

Zamir, M. (2001). Arterial Branching within the

Confines of Fractal L-System Formalism. The

Journal of General Physiology, 118(3), 267-276.

15 of 16

Figure 10. SwarmGrammar Art: Each of the two scenes is a composition of sub-structures evolved from

different swarm grammars, similar to the ones discussed in the text.

16 of 16

