
Abstract

We present a new way of dynamically growing 

and breeding structures in 3D space through 

swarming agents. Different agent types and the 

way they evolve over time is specified by a swarm 

grammar similar to Lindenmayer systems. We 

expand common L-system string interpretation 

from a single turtle to a multitude of turtles which 

behave like a swarm. By describing swarm agents 

within the framework of formal grammars, we 

build a bridge from symbolic production systems 

(rewrite systems) to three-dimensional real-time 

construction procedures that are executed by re-

active and interacting agents which move in simu-

lated physical 3D spaces.

We introduce constructor agents, their formal rep-

resentation in swarm grammars and demonstrate 

by examples how (1) the swarm rules, (2) the 

agent parameters and (3) the environment can 

influence the actual construction and growth 

processes that are initiated and directed by the 

swarms.

In order to facilitate exploration of a large variety 

of swarm grammars, we apply interactive evolu-

tionary design methods to create swarm grammar 

sculptures and 3D structures.   

Keywords: swarms, swarm intelligence, swarm 

grammars, design of 3D structures, generative 

design, rewriting systems, Lindenmayer sys-

tems, agent-based design, multi-agent system.

1. Introduction

Looking at life around us, we are immersed in 

a natural world of massively parallel, decen-

tralized biological ‘information processing’ 

systems; a world that exhibits fascinating 

emergent properties in many ways due to de-

velopmental processes, growth, and self-

organization. In fact, our very own bodies are 

the result of emergent patterns, as the devel-

opment of any multi-cellular organism is de-

termined by localized interactions among an 

enormous number of cells – carefully orches-

trated by enzymes, signaling proteins and 

other molecular ‘agents.’ What is particularly 

striking about these highly distributed devel-

opmental processes is that a centralized con-

trol agency is completely missing. This is also 

the case for many other biological systems, 

such as termites which build their nests with-

out an architect that draws a plan, or brain 

cells evolving into a complex ‘mind machine’ 

without an explicit blueprint of a network 

layout. 

Obviously, being able to understand, 

build and harness the emergent properties of 

such systems would be highly beneficial for 
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helping us to create a new generation of de-

sign and manufacturing techniques. Designers 

of complex systems could utilize their adapt-

ability and robustness. Such systems would 

construct themselves, through self-

organization. However, system designers and 

programmers are facing an enormous chal-

lenge. How can we actually build highly dis-

tributed systems of which we have only lim-

ited understanding? We have to invent new 

ways of building, maintaining, and control-

ling such systems.

The Swarm Grammars we are going to 

present here provide a first step towards a 

new methodology for the creation and design 

of 3D forms and shapes. With swarm gram-

mars (SGs) we capture growth processes that 

result from the interactions of swarming 

agents while they create branching structures 

in 3-dimensional space. 

Generative representations of design 

patterns for 3D forms, such as  Lindenmayer 

systems (L-systems), have been used very 

successfully to model growth processes. 

Originally, L-systems were developed to cap-

ture growth in bacterial and yeast cells (Lin-

denmayer 1968; Rozenberg & Lindenmayer 

1986). Soon L-systems were investigated in 

the context of formal languages (Rozenberg 

& Salomaa 1980; Rozenberg et al. 1986). 

Capturing the developmental processes that 

lead to branching patterns in plants became 

another major area of study involving L-

system grammars (Prusinkiewicz & Hanan 

1989; Prusinkiewicz & Lindenmayer 1990; 

Hanan 1992; Prusinkiewicz 2004). Other 

models of branching structures in dendritic 

growth of neurons (Hamilton 1994) and in 

arteries (Zanis 2001) have used L-systems as 

well.

More recently, generative approaches 

using L-systems have explored architectural 

designs (Coates 1999; Hemberg 2001; Jack-

son 2001), designs for modular robots 

(Hornby et al. 2001; Hornby & Pollack 

2001a), efficiently encoded physical designs 

(Hornby & Pollack 2001b), evolvable hard-

ware (Haddow 2001) and solutions in compu-

tational mechanics (Alber et al. 2002).

In L-systems, a formal grammar speci-

fies rules that capture the step-by-step growth 

process by rewriting a string of symbols, 

which are subsequently translated into 

graphical objects through a turtle interpreta-

tion. A turtle is a virtual drawing device that 

is navigated in 3D space following the sym-

bolic commands of the string. In swarm 

grammars we substitute the turtle interpreta-

tion by a swarm interpretation. Instead of a 

single turtle following the path described by 

an L-system, a swarm of ‘turtle agents’ inter-

pret the grammar rules. This simple expan-

sion from one interpreting turtle to a swarm 

reveals new dimensions in performance, dy-

namics and complexity of the resulting struc-

tures. The swarm agents are not only con-

trolled by the grammar rules, but have the po-

tential to interact among each other and with 

their environment. In fact, collision resolution 

among branching structures can be accounted 

for quite easily through parallel swarm-based 

turtle interpretation.  This does not only lead 

to more interesting designs emerging from the 

swarm’s dynamics, but also engages the de-

signer in an interactive dialog with the crea-

tive process, by introducing alternate swarms 

or other static and dynamic environmental 

components that can influence a swarm’s de-

velopmental processes.

Describing the swarm grammar ap-

proach in more detail, we proceed in the fol-

lowing manner: In Section 2 we define swarm 

grammar systems and their associated build-

ing agents. Examples of building processes 

implicitly described by swarm grammars are 

illustrated in Section 3. Here we also show 
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which effects the rewrite rules and the agent 

parameters have on the actual swarm-driven 

building process. In Section 4 we show how 

swarm grammar agents encounter other enti-

ties within their environment and how these 

interactions influence the building dynamics 

and the resulting compositions. We describe 

the exploration of new swarm grammar rules 

and agent parameters through an evolutionary 

system in Section 5. A brief comparison to L-

systems—with respect to parallel turtle inter-

pretation, in particular—is presented in Sec-

tion 6. A short outline of future expansion 

possibilities of swarm grammar systems in 

Section 7 concludes this contribution. 

Figure 1. Example of a swarm grammar system 

with two rewrite rules, a start symbol, and a 

set of attributes for agent types A and B 
(see Section 2.2 for more details).

2. Swarm Grammar System

In this section we describe the two key parts 

of a swarm grammar system: (1) a set of re-

write rules, which determine the composition 

of agent types over time, and (2) a set of 

agent specifications, which define agent type 

specific parameters that govern the agents’ 

interactions.

2.1. The Swarm Grammar

A swarm grammar system SG = (SL, !) con-

sists of a rewrite system SL = (", P) and a set 

of agents ! = {a1, a2, ..., an}. The rewrite sys-

tem SL is an L-system with axiom " and pro-

duction rules P (Jacob 2001). In the simplest 

form of  context-free 0L-systems, each rule 

has the form p ! s, where p is a single sym-

bol over an alphabet !, and s is either the 

empty symbol (") or a word over !. Each 

agent ai is characterized by a set of attributes, 

which can include its geometrical shape, 

color, mass, vision range, radius of perception 

and other parameters such as separation or 

cohesion urges that determine its behavior 

while encountering its environment. Figure 1 

gives an example of such a swarm grammar 

with two types of agents. The rewriting proc-

ess begins with start symbol A. In the first 

iteration of applying any matching rules, only  

the first rule is applicable, hence A is rewrit-

ten into AB. At the next iteration, both rules 

apply: A is rewritten into AB, and B is rewrit-

ten into A. The resulting string is ABA. Fur-

ther rewriting will result in the following 

word sequence:

# t0: # A 

# t1: # AB

# t2: # ABA

# t3: # ABAAB

# t4: # ABAABABA

# # ...

Here each ti represents a decision point1 

where an agent triggers the application of the 

next SL-system iteration with the string de-

scribing the current composition of the 
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swarm. In the example above we have five 

type-A and three type-B swarm agents after 

decision point t4. Figure 2 shows the first 

steps of the swarm interpretation in 3D space. 

The single type-A agent starts its vertical as-

cent, building a cylindrical shape on its way. 

At decision point t1 agent A is replaced by a 

new agent of type A and a type-B agent. A-

agents are the only ones that move, whereas 

B-agents build a bent branch tip and then stop  

(Fig. 2(c)). At time point  t2  agent A is re-

placed by agents of type A and B, and the 

former B-type agent is replaced by an A-

agent. Figure 2(f) illustrates the branching 

structure resulting after a few more iterations.

2.2. The Swarm Agents

In our demonstrations, a swarm agent is rep-

resented as a pyramid pointing in the direc-

tion of its velocity vector (Fig. 3). Each 

agent’s awareness of other flock mates is de-

termined by its field of perception, which is 

defined by a radius and an angle as illustrated 

in Figure 3(a). An agent will only interact 

with those agents that are within its field of 

perception. We call these agents its neighbors. 

Both the radius and angle of the field of vi-

sion are part of an agent’s attribute set. 
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Figure 2. Step-by-step illustration of swarm interpretation in 3D space (see text for details).

(d) t2: ABA (e) t3: ABAAB (f) t > t3

(c) t1 < t < t2(b) t1: AB(a) t0: A



(a) Agent perception (b) Cohesion

(c) Alignment (d) Separation

Agent Ai

Figure 3. Basic interactions with other agents. 

The velocity vector V of an agent is up-

dated according to the following formula: 

V = c1 V1(d) + c2 V2 + c3 V3 + c4 V4 + c5 V5.

Here we follow the simple boids model of 

interaction rules (Reynolds 1987), where an 

agent changes direction and adjusts its speed 

according to three influential factors (Fig. 

3(b)-(d)): 

• separation (V1(d)): steer away from the 

collective of neighbors if the minimum 

distance is smaller than a crowding 

value d (Kwong 2003). 

• cohesion (V2): move toward the average 

position of local flock mates, and

• alignment (V3): reorientation towards 

the average direction of its neighbors.

Vector V4 points to the center of the 

simulated 3D world and V5 represents a ran-

dom unit-length vector to add some noise. 

The weights c1, ..., c5 determine how much 

influence each factor has on the agent. Each 

of these ‘urges’ is specified for an agent type 

as part of a swarm grammar. In Figure 1, for 

example, separation and wander urge corre-

spond to weights c4 and c5, respectively. 

An agent stops applying the SL-system 

rules when it runs out of energy, which is 

passed on from one generation of agents to 

the next. The energy level also influences cer-

tain properties of the built 3D structures such 

as, for example, the radius of the cylinders.

In summary, an SL-grammar repeatedly 

defines the successors of an agent. Predefined 

parameters determine when a construction 

element is built, when a production rule is 

applied, how much energy is lost through the 

creation of a construction element, and when 

the agent runs out of energy and thus is un-

able to reproduce.

3. SG Agents in Action

Now let us have a look at the effects that 

emerge when we modify the set of production 

rules and the agent parameters that determine 

their flocking behaviors. The following  ex-

amples will demonstrate the high degree of 

interaction dynamics and the resulting variety  

of outcomes to be expected from swarm 

grammar systems that build 3D structures. 

3.1. Changing the SL-system Rules

We first discuss a small sample of tree-like 

structures that result from various sets of pro-

duction rules. In order to illustrate some of 

the basic effects, we use only a fairly limited 

number of swarm agents.

Agent
Type

Separation
 c1

Random
c5

A 0 0.01

B 1.7 0.01

C 13.7 0

Table 1. Flocking parameters of agent types A, B, 

and C. All other parameter weights (c2, c3, 

and c4) are set to zero.
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Figure 4. Examples of branching structures created from agent interactions governed by different swarm 

grammars.  

(d) Agents: 50

SLd = (A, {A ! BBBABBB, B ! λ})

(e) Agents: 86

SLe = (A, {A ! BBBABBB, B ! C, C ! λ})

(b) Agents: 64

SLb = (A, {A ! BAB})

(a) Agents: 87

SLa = (A, {A ! AB, B ! A})

(c) Agents: 407

SLc = (A, {A ! ABA, B !A})



Consider three types of swarm agents—

A, B, and C—with parameters as in Table 1, 

which describe the weights of their separation 

urge (c1) and random movement (c5). The re-

maining behavior parameters (c2, c3, c4, d) are 

set to zero. Initially, all agents are oriented 

upwards, hence will move towards the top 

(increasing their y coordinate). 

The interpretation of swarm grammar 

SLa = ($ = A, P = {A ! AB, B ! A}) results 

in a tree-like structure with sparse branches, 

which makes it easy to analyze (Fig. 4(a)). 

The ‘natural’ look of the overall tree can be 

attributed to the small degree of random 

movements of both types of agents. A-type 

agents move upwards with no urge to sepa-

rate, whereas any B-agent moves away from 

agents of type A, due to its urge for separation 

(c1 = 1.7). Hence the arrangement of the 

branches is mainly a consequence of the 

agents’ interactions. 

With the even simpler grammar SLc, the 

style of the tree looks similar to the structure 

from SLa (Fig. 4(b)), where B-agents only 

place stationary building blocks and then 

stop.

A different branching pattern is shown 

in Figure 4(c), where a slightly larger number 

of A-agents is generated at each decision 

point by adding an extra A-type agent com-

pared to SLa. This leads to bursting agent re-

productions, a more expansive growth of the 

branches, and the formation of a denser can-

opy. The small green objects at the branch 

tips represent the swarm agents that are still 

to finish their next building step.

 However, an increased number of gen-

erated agents does not always mean that the 

complexity of the emerging structures in-

creases as well. The SL-system in Figure 4(d) 

produces a large number of agents, but the 

outcome is quite simple, as type-B agents 

only get the chance to establish a short side 

branch and are removed before the next build-

ing step. 

In Figure 4(e), a third agent type, C, is 

added, which has a very high separation urge 

with no random component added (Table 1). 

As C-agents are also oriented vertically at 

their time of creation, they are responsible for 

the vertical branch endings.

3.2. Changing the Agent Parameters

Instead of changing the SL-system rules, we 

are now going to modify the agents’ flocking 

parameters and look at the consequences with 

regard to the generated 3D structures. We 

start from a swarm grammar with a single 

rule that enables forked branching:

SGsimple = (" = A, P = {A ! AA}, %).

At each iteration step, one type-A agent 

reproduces into two A-agents. As there is only 

one type of agents, they all share the same 

flocking parameters listed in Table 2. These 

settings were reported by Kwong (2003) who 

investigated swarm interaction patterns and 

their evolution in more detail. Kwong discov-

ered a range of parameter settings, where the 

agents displayed formations such as figure 

eights, rings and other choreographed ar-

rangements (see also Kwong & Jacob, 2004). 

Figures 5(a), (b), and (c) show snapshots of a 

line formation, a ring formation, and a loose 

cluster emerging from the parameter sets (1), 

(2), and (3) in Table 2, respectively. Here the 

additional parameter crowding is introduced. 

If the distance to a neighbor is within crowd-

ing range, the separation urge is in effect. 

This allows an agent to influence only a sub-

set of its actual neighbors. The parameters 

amax and vmax denote the agents’ maximum 

allowed acceleration and velocity, respec-
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tively. No agent can fly faster or accelerate 

faster than specified by these limits.

(1) (2) (3) (4)

Separation (c1) 1 5 5 2

Cohesion (c2) 10 8 0 3

Alignment (c3) 5 7 2 7

World Ctr (c4) 14 8 7 6

Random (c5) 1 5 6 3

Crowding 0.14 0.14 0.23 0.01

amax
39 38 40 40

vmax
9 13 6 6

Table 2. Flocking parameter settings that lead to 

the following behaviors: (1) large ring for-

mation, (2) line formation, (3) a loose sta-

tionary cluster, and (4) a figure eight.

The bottom images in Figure 5 show 

the structures that result from using the same 

types of agents to interpret swarm grammar 

SGsimple as described above. The building 

blocks of the depicted structures bear differ-

ent colors (or grey levels) so that their com-

position over time is visualized. Lighter-

colored building blocks are built earlier. The 

structure in Figure 5(d), for example, was 

built from left to right, with intermittent 

changes of the swarm’s direction. This con-

struction does not seem to involve any 
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Figure 5. Choreographed swarms are employed for building 3D sculptures. Top: snapshots of choreo-

graphed flocking behaviors; (a) line formation, (b) ring formation, (c) loose cluster formation. Bot-

tom: the structures built by the corresponding swarm grammar agents. Lighter (darker) colors of 

building blocks indicate earlier (later) addition during the building process (flocking parameters ac-

cording to Table 2). Videos of these choreographed swarms are available at: 

http://www.swarm-design.org/SwarmGrammars/movies/. 

(d) (e) (f)

(a) (b) (c)

http://www.swarm-design.org/SG/videos/
http://www.swarm-design.org/SG/videos/


branching due to agent separation urges. The 

smooth bands originate from the agents’ al-

most perfect flight coordination while con-

structing very similar, almost parallel fibers. 

Looking a little closer, however, reveals a 

small gap at a U-turn slightly off the center at 

the top right of the image (see Fig. 5(d) inset). 

The structure in Figure 5(e) evolves 

spherically from a center point. The large ring 

flocking behavior of the swarm contributes to 

a spiky and impulsive character of this grow-

ing ‘sculpture’.

Our third example of combining cho-

reographic swarms with swarm grammars in-

volves flocking behavior where the agents 

form loose, temporary clusters, then disperse 

and regroup to form new clusters at a differ-

ent location. This behavior is induced by the 

parameters in Table 2(3). The formation of 

one of these clusters is depicted in Figure 

5(c). Looking at the corresponding structure 

built by the swarm grammar agents, the sites 

of cluster formation are clearly identifiable as 

‘knots’. Since the flocking parameters allow 

for a rather dynamic flight, single agents can 

leave one cluster and join another one at a 

different location. 

4. Interactions with the Envi-

ronment

In this section  we present three different 

kinds of interaction with both static and dy-

namic elements within the environment. Table 

3 lists the parameters for the six types of 

agents we are going to employ. 

D E F, G, H I

Separation 0 10 80 33

Cohesion 0 0 0 10

Alignment 0 0 10 11

World Ctr 10 1 1 5

Random 10 2 4 0

Crowding 0 10 10 1
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Figure 6. Swarm grammar agents interacting with objects in their environment: (a) a static wall constricts 

agents from reaching a goal point behind it; (b) agents tend towards a goal point that orbits above 

the construction center. Videos of these environmental interactions are available at: 

http://www.swarm-design.org/SwarmGrammars/movies/.

(a) (b)

http://www.swarm-design.org/SG/videos/
http://www.swarm-design.org/SG/videos/


D E F, G, H I

amax
30 30 10 27

vmax
2 5 4 2

Table 3. Parameter settings for agent types D, E, 

F, G, H, and I.

4.1. Swarm—Object Interaction

Figure 6(a) shows an example of agents 

interacting with non-moving objects in their 

environment. Agents of types F, G and H tend 

to move towards the world center, which, in 

this case, is located beyond the wall and far 

up in the sky (like a sun). Whenever a swarm 

agent tries to penetrate the wall, it bounces 

back as its velocity vector’s x- and z-

coordinates are reversed. This implements a 

simple collision detection with static objects.  

As soon as the swarm structure has outgrown 

the wall, the agents are no more prevented 

from moving towards their destination.

As soon as the world center becomes 

dynamic, its movement pattern is reflected in 

the construction of those swarm agents that 

tend towards it. In Figure 6(b) the world cen-

ter orbits far up in the sky and around the y-

axis of the simulation. Both agent types, D 

and E, are attracted towards the moving world 

centre. Consequently, the structure they build 

reflects an upward, twisted growth pattern. In 

order to better recognize the constructors, D-

type agents are assigned a very light and 

agents of type E a darker color. As D-agents 

do not feel the urge to separate from their 

neighbors, they almost perfectly drive up-

wards around the y-axis. The constructions 

from agents of type E outgrow the ones from 

the D-type since E-agents are allowed a 

greater maximum velocity (compare Table 3).
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(a) (b)

Figure 7. Constructing swarms interacting with another flock of agents. (a) Resulting construction with no 

other swarm present; (b) the same swarm!s movements are influenced by another (non-

constructing) swarm of agents shown in blue. Videos of these swarm constructions are available 

at: http://www.swarm-design.org/SwarmGrammars/movies/. 

http://www.swarm-design.org/SG/videos/
http://www.swarm-design.org/SG/videos/


4.2. Swarm—Swarm Interaction

In the previous examples, the swarm grammar 

agents were interacting with either static or 

dynamic objects. Now, consider a second 

swarm that is not part of a swarm grammar, 

but exhibits flocking behavior within the en-

vironment. Both swarms influence each other 

as soon as some of their individuals enter the 

field of vision of the other swarm agents. 

These swarm-swarm interactions are 

hard to capture in a screenshot. However, the 

swarm grammar agents witness the exertion 

of influence from the other swarm by leaving 

a trace in the 3D construction space. 

We look at another simplistic swarm 

grammar:

SGstraight-up = (" = I, P = {I ! I}, !).

 Figure 7(a) shows the structure that is built 

by this swarm grammar, with no elements in-

teracting with the swarm agents. The move-

ments of the type-I agents are not driven by 

any randomness, so that any deviation from 

the presented structure has to be seen as the 

result of other external factors. The agent pa-

rameter settings are listed in Table 3.

Figure 7(b) displays a scene where the 

interaction between both flocking and swarm 

grammar agents is still in progress. The blue 

pyramidal shapes represent (non-building) 

agents that organize their flight in a figure 

eight formation (parameters according to Ta-

ble 3 and taken from Jacob & Kwong 2004). 

As a result of the interactions between the 

building swarm and the flocking swarm, a 

completely different structure emerges. When 

one observes this construction during run 

time, the influence of the swarm grammar 

agent on the other swarm is fascinating to 

watch: as long as the swarm grammar agent is 

present, there is a very high probability of the 

other flock-mates to interact with it, as the 

figure eight formation usually occurs around 

the world center. 

5. Swarm Grammar Evolution

We use an extension of Inspirica (Kwong 

2003), one of our evolutionary design tools, 

to explore the potential of generating swarm 

grammar systems that exhibit intriguing con-

structions. As illustrated in Figure 8, a collec-

tion of swarm builder simulations is simulta-

neously presented to the user. Each window 

shows the interpretation of different swarm 

grammar rules and with different agent pa-

rameters. All windows display the construc-

tion process as it occurs. All designs are true 

objects in 3D space, hence can be rotated, 

zoomed and inspected in various ways. After 

assessment of the presented structures, the 

swarm designer assigns fitness values be-

tween 0 and 10 to each solution. 

The rewrite rules and agent parameters 

are represented as symbolic expressions, so 

that genetic programming (GP) can be used to 

evolve both the set of rules as well as any 

agent attributes (Jacob 2001). For the exam-

ples we present here, only context-free rules 

with a maximum string length of three (|s| = 

3) are applied. We allow at most five rules per 

SG-genotype. GP mutation and crossover are 

the only genetic operators. 

As this is our first swarm grammar pro-

totype, the results presented here  are still 

simplistic, but they already reveal the poten-

tial of form generation through SG systems. 

Figures 9 and 10 show selected examples of 

such evolved structures. As developmental 

rewrite systems are usually rather sensitive to 

changes in the genotypes—which can result 

in vastly different growth structures and de-

velopmental processes—we have limited our 

grammars to only three symbols. In the Evol-
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vica system (Jacob 2001) we have used filters 

on typed genetic operators to limit variability 

on L-system genotypes, which can be applied 

to swarm grammars as well. However, further 

investigations will be necessary to explore 

different encodings and genotype-phenotype 

mappings for swarm grammars.  

6. Discussion

The interpretation of an expanded L-system 

string by a single turtle has always been one 

of the major constraints of L-systems. 

Whereas the rewrite rules are applied in paral-

lel on a single string (i.e., any matching rule 

is applied), the interpretation of the string by 

a single turtle serializes the actual drawing or 

creation process of the 3-dimensional struc-

tures. Simulating the growing branches of a 

tree, for example, this creates major issues as 

the branch tips are not created in a parallel 

fashion. Hence, detection of branch collisions 

and their resolution has to be dealt with after 

collisions have already occurred (Mech & 

Prusinkiewicz 1996). Within the swarm 

grammar approach, these problems do not 

arise any more, as the swarm agents act as 

independent, interacting units which resolve 

collisions on their own. Hence, swarm gram-

mars combine the ease of specification of a 

grammar system with the interpretive power 

of a multitude of building devices (extended 

‘turtles’) in 3D spaces. 

Organizing sets of swarm agents 

through deterministic, context-free grammars 

has enabled us to transfer the notion of con-

nectivity – which is inherent in rewriting sys-

tems – onto structures that are created by co-

ordinated movements among swarm agents. 

The underlying grammar has a profound ef-

fect on the resulting topology of the built 

structures, whereas the employed swarms and 

their characteristics largely determine the dy-

namic composition process.
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Figure 8. The interactive evolutionary design interface used to explore swarm grammar rules, agent pa-

rameters, and their corresponding 3D structures.



7. Swarm Grammars: What 

Next?

There is a wide range of possibilities to ex-

tend the proposed swarm grammar approach. 

Here are a few of these expansions we are 

currently beginning to explore. As SG-

systems are natural extensions of Linden-

mayer grammars, all variants of L-systems 

are applicable as well, such as: context-

sensitive production rules, non-deterministic 

or probabilistic rules, map SG-systems, and 

table SG-systems. Prusinkiewicz & Linden-

mayer (1991) give a good overview of these 

L-system variants. How far these extended 

SG-systems will expand the variety of con-

ceivable designs remains to be seen.

Similar arguments apply to the agent 

side of SG-systems. Not only can interaction 

parameters be changed, but one may define 
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Figure 9. Collage of evolved designs generated from swarm grammar systems.



agents with specific (simulated) physical 

properties (limited speed, mass, vision, etc), 

or constrain their interaction spaces (e.g., 

termites that build nests, but cannot fly). Evo-

lutionary design systems—such as Evolvica 

(Jacob 2001) and Inspirica (Kwong 2003)—

will certainly help us to unleash the still 

largely hidden powers of generative, dynamic 

design through swarm grammar systems.   

Software

Sample code of our swarm grammar systems 

and other swarm-based simulations, which 

our Evolutionary & Swarm Design Labora-

tory is working on, are available at 

http://www.swarm-design.org.
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Figure 10. SwarmGrammar Art: Each of the two scenes is a composition of sub-structures evolved from 

different swarm grammars, similar to the ones discussed in the text. 
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