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Abstract

Many mathematical models, which try to capture emergent
phenomena, are based on state transitions that depend on
neighborhood relationships. Cellular Automata (CA) and
Random Boolean Networks (RBN) are examples of such
models, where connectivity patterns determine the flow of
signals among interconnected units. Whereas neighborhoods
in CA and RBNs remain static, the focus of our investi-
gations are artificial swarms that act in three-dimensional
space, where neighborhood relationships among the swarm-
ing agents change over time. In fact, it is through the dy-
namically changing neighbors that determine a swarm sys-
tem’s overall behavior. In this paper we explore neighbor-
hood dynamics of swarms and ask the question how each
agents’ time-dependent perception of its neighbors relates to
specific flocking formations. We give examples of ‘neighbor-
hood functions’ for choreographed swarming behaviors, such
as line and figure-eight formations. We also evolve control
parameters for swarm agents such that they approximate spe-
cific neighborhood functions that trigger switching and oscil-
lations.

Introduction
Complex systems in nature usually comprise large numbers
of interacting units, as for instance immune system cells that
swarm in our bodies to fight off pathogens and remove dam-
aged cells (Litman et al. (2005)). However, it already takes
great effort to create and analyze stochastic models of only
a few interacting units (Oilek and Klein (1979)).

Numerical experiments have been playing an increasingly
important role in the investigation of complex systems (Nee-
lamkavil (1994)). In order to build numerical models of
complex systems, it is necessary to identify those features
of natural systems that are crucial for the emergence of
the phenomena of interest (Dasgupta (2006)). In particu-
lar, complex patterns that appear in natural systems, form in
space and unfold over time, have been reproduced in mod-
els built from large sets of computational units that change
their states in accordance with their local neighborhoods.
Cellular Automata (Wolfram (1984)) and Random Boolean
Networks (Kauffman (1995)) are examples of such models,
both of which will be outlined in the subsequent section on
related work.

Like in natural swarms — such as bird flocks or fish
schools —, the neighborhoods of artificial swarm individ-
uals change constantly and depend on preceding interac-
tions. Therefore, artificial swarms represent a model of com-
plex phenomena that embraces dynamical neighborhood re-
lationships. We explain this idea in detail in the third section.

In order to capture the formation of neighborhood rela-
tions in swarms, we measure the numbers of neighbors for
every individual at each simulated time step, within a par-
ticular neighborhood radius. We show examples of neigh-
borhood evolutions and discuss these through swarms that
exhibit specific flocking formations.

Subsequently, we demonstrate that switching and oscil-
lating neighborhood formations can be achieved in homoge-
neous swarm systems whose flight is solely regulated by a
linearly scaled acceleration of the individuals. We conclude
this paper with a summary and an outlook on future work.

Related Work
In Cellular Automata (CA) the processing units (cells) are
organized in a lattice structure and are set to an initial state
that is changed in accordance with a set of rules that consider
the states of all neighboring cells. CAs were primarily de-
veloped to model phenomena of self-reproduction based on
the interplay among a large number of finite state machines
(von Neumann and Burks (1966)). Not only was this goal
finally achieved (Gardner (1970)), but CA also became a
general model for complex systems based on neighborhood-
dependent state changes (Wolfram (2002)). According to
Wolfram (1984), patterns emerging from binary cellular au-
tomata can be classified into four different categories:

1. spatially homogeneous state;
2. sequence of simple stable or periodic structures;
3. chaotic aperiodic behaviour;
4. complicated localized structures, some propagating.

The transition from one such class or phase to another is of
considerable interest for various models of natural phenom-
ena such as the spreading of infectious diseases (del Rey



et al. (2006)). We will explore similar transitions for swarm-
ing agents in 3D space, for which their neighbors change
dynamically over time.

Whereas in CA cells have a fixed spatial arrangement,
Random Boolean Networks or ‘RBNs‘ (Kauffman (1995))
abstract from the notion of space. Here, each cell can be
connected to any other one, forming an information prop-
agating network. As in CAs, the configuration of all cells
defines the global system state.

Albert et al. conducted experiments to create and ana-
lyze random RBN with the same distributions of degrees
of connectivity as those shown in gene regulatory networks
(Albert (2004)), and other scale-free networks (Hidalgo and
Barabasi (2006)). It has been demonstrated that RBN mod-
els show state transition patterns very similar to those of nat-
ural networks (Serra et al. (2003)).

Swarms as a Model of Complexity
Once determined, the neighborhood relations between the
units of a CA or RBN remain fixed. One may assume, how-
ever, that in many natural phenomena different forces draw
and push the involved units so that they change their posi-
tions, as is observed in bird flocks, fish schools, ant colonies,
cell development. Thereby, of course, the neighborhoods of
the units do not remain static.

Exactly this idea is captured in the ‘swarm metaphor’.
Large sets of swarm individuals, or agents, attract and re-
pel each other. The neighborly influence felt by one indi-
vidual determines its action for the next time step. A swarm
agent changes its velocity and position, thereby gaining a
new neighborhood perspective and, at the same time, alter-
ing its neighbors’ perspectives. Consequently, a feedback
loop of actions and reactions emerges. Unlike in CA and
RBN, state changes directly impact neighborhood bonds.
We argue that this feedback loop between agents and their
changing neighbor arrangements is the key feature to model
spatially organized systems, since locality plays a crucial
role for any effective interaction.

Reynolds (1987) presented a computational model to sim-
ulate flocking formations as seen in birds or herds of ani-
mals. Here, a set of agents, called boids, perceive and react
to each other in three-dimensional space. A formal descrip-
tion of Reynolds’ flocking model was provided by Kwong
and Jacob (2003) who interactively evolved different flight
formations of boids. In particular, a boid perceives its neigh-
bors within a viewing cone of length l and angle α (Figure
1). A boid reacts to its n neighbors by an alignment urge ~va,
by attraction towards and repulsion from the geometric cen-
ter of the neighbors ~vc, and, if they get too close, by a sep-
aration urge ~vs. Fluctuations are introduced into the flight
pattern by adding a weighted random unit-vector ~vr to the
acceleration. A boid’s velocity and acceleration are limited
by two values: vmax and amax, respectively. Additionally,
a world center ~w is provided that determines the swarm’s

Figure 1: The three basic flocking urges alignment (a), co-
hesion (b) and separation (c) are depicted as they would in-
fluence (grey arrows with b/w head) the central agents (pix-
elized). White agents are out of scope, grey ones are within
the neighborhood vicinity and dark grey ones are close
enough to trigger separation. The diagrams are adapted from
Craig Reynolds’ website http://www.red3d.com/cwr/boids/.

flight destination. In order to compute boid i’s acceleration
~ai and resulting velocity ~vi and position ~pi one has to deter-
mine its set of neighbors, Ni. All those agents in Si ⊆ Ni

whose distance to i is smaller than dmin assume a special
role by contributing to i’s separation urge. Once its set of
neighbors is determined, the acceleration vector of a boid
results from the following weighted sum of urges.

~ai = ca~va + cc~vc + cs~vs + cw~vw + cr~vr (1)

~va =
1
|Ni|

∑
j∈Ni

~vj (2)

~vc =
1
|Ni|

∑
j∈Ni

~pj (3)

~vs =
1
|Si|

∑
j∈Si

~pj (4)

~vw = ~w − ~pi (5)

Neighborhood relations depend on the sight, the orienta-
tion and the position of the seeing individual, on the position
of the potentially perceived individual, as well as on time.1

We want to point out that the emerging causal chain of
boid interactions can be expressed as follows (Figure 2): The
actions of a swarm agent i change its state which influences
all those agents that are seeing i. At the same time i’s new
state results in the perception of a certain set of neighbors.
These neighbors influence i’s actions and the feedback loop
starts all over again.

It is worthwhile noting that the system state and the neigh-
borhood configuration are inseparable in the outlined swarm
model. As a consequence, the observation of alterations of
neighborhoods can be utilized to describe the system dy-
namics. Therefore, we measure the numbers of perceived
neighbors n(t) = |Ni(t)| of each swarm agent i at any given

1All vectors ~ai, ~va, ~vc, ~vs, ~vw and sets Si and Ni are time-
dependent, but we will not denote the time variable explicitly.
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Figure 2: The slim arrows in the upper box show the direc-
tion of influence between perception, action and state of a
swarm agent i. The S-P tuples stand for the state and per-
ception modules of other agents that interact with i.

point in time t. We characterize a single state of the whole
swarm by the average neighbor value of all M swarm indi-
viduals. That is, we define the time-dependent neighborhood
function for a swarm with M agents as

n̄(t) =
1
M

N∑
i=0

ni(t). (6)

Finally, we suggest the evolution of n̄(t) over the course
of time to analyze and describe the dynamics of the (swarm)
system. Based on this approach we investigate various flock-
ing formations of boid swarms in the next section.

Analysis of Flock Formations
Kwong and Jacob (2003) have shown that diverse flocking
behaviors of boids can be evolved with different parame-
ter sets for Equations 1 to 5. We utilize four sets of flock-
ing parameters from this work (Table 1) to analyze ‘choreo-
graphic‘ line formations and figure-eight formations based
on n̄(t). Two different swarm configurations are provided
for each formation type. The following analysis links several
phases of swarm interactions and the occurrences of desired
formations to the development of the neighborhood function
n̄(t). The presented results are all produced by 50 swarm
agents with a perception radius l = 3.5 and viewing angle
α = 2.0. As above, we normalize all n̄(t) values by the
number of active swarm agents.

Line Formations
Figure 3 shows the development of n̄(t) with the line for-
mation parameters in row (i) of Table 1. The graph shows
the average number of neighbors perceived by each agent
over time. The plot can be partitioned into five distinct
phases. In phase I, the average neighborhood perception n̄
is rising rapidly. Mainly the urge towards the world center
~w = (0, 0, 0)T accelerates the initially stationary agents to-
wards each other (Figure 4 (a) to (c)), ending up much closer

than before (Figure 4 (d)). In fact, this phase was already de-
scribed by Reynolds (1987).

Line formations
ca cc cs cw cr amax vmax dmin

(i) 7 8 5 5 5 38 13 0.14
(ii) 7 8 4 10 4 40 9 0.01
Figure-eight formations

ca cc cs cw cr amax vmax dmin

(i) 3 10 1 5 2 38 6 0.01
(ii) 5 10 2 12 1 35 6 0.34

Table 1: Evolved parameter sets for ‘choreographically‘
flocking swarms (Kwong and Jacob (2003)).
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Figure 3: Developments of the average neighborhood per-
ception n̄(t) matches several phases of agent interactions
and flock formations.

Figure 4: In phase I initially stationary agents are drawn
together by the urge towards the world center.



During cluster formation the agents gain momentum by-
passing many other agents. This leads to the decreasing
average neighborhood perception in Phase II. As a result,
several smaller flocks emerge after these two initial phases
(Figure 5). The cohesion urge is now strong enough to keep
subgroups of agents together that gather in the same vicini-
ties (Figure 5 (a)). The alignment urge transforms these
subgroups into flocks that exhibit increasingly homogeneous
flight patterns (Figure 5 (b)).

Figure 5: In phase II subgroups align as separate flock for-
mations.

In phase III of Figure 3, a line formation emerges (Fig-
ure 6 (a)), yielding relatively small values of n̄. Steadily,
the agents are drawn closer to each other and n̄(t) increases
accordingly. In phase IV a dense agglomeration of agents
emerges at the head of the line formation (Figure 6 (b)).
Eventually, the line formation is destroyed and substituted
by a tight cluster formation (Figure 6(c)). After reaching
phase V, the flock remains in a quasi steady state that is sub-
ject to only minor fluctuations (Figure 6(d)).

Figure 6: (a) Phase III: agents of single flocks follow each
other in a line formation. (b) Phase IV: agents gather into
dense clusters at the heads of the line formations. (c) and
(d) Phase V: a tight cluster has formed that is robust enough
against sporadic attempts of separation.

Changing the simulation to the line formation (ii) pa-

rameters in Table 1 results in increased randomness of the
agents’ acceleration. The swarm looses its tight, cohesive
constraints and thereby allows for the sporadic escape of
agents. Figure 7 shows the corresponding neighborhood
function. The neighbors of a fleeing agent may try to catch
up and break out of the cluster as well. Consequently, the
swarm’s flight is dominated by tight cluster formations but
is frequently interrupted by line formations (Figure 8). An-
other consequence is that single agents or even whole flocks
can leave the parent flock, so that eventually all agents are
dispersed and unable to interact.

Figure 7: In the simulation of line formation (ii) of Table
1 agents break out of tightly formed clusters and take the
lead of long line formations. During such events n̄ drops
temporarily (e.g. at t = 25 and t = 32). Frequently the line
formations break up (as in Figure 6) and the parting flocks
do not interact anymore (t = 50). As a consequence, n̄(t)
reaches a value of zero at about t = 400.

Figure 8: An agent cluster is breaking up into two line for-
mations, one urging upwards, one towards the floor.



Figure-Eight Formations
In analogy to the discussed line formation examples, we in-
vestigate two boid configurations that exhibit figure-eight
flight patterns with respect to n̄(t). As we can see in Fig-
ure 9, parameter configuration (i) from Table 1 reaches a
steady state, whereas with setting (ii) agents repeatedly wan-
der through different phases to eventually spread all agents
far enough from each other to prevent further interaction —
exactly as in line formation (ii) and in Figure 7.

Configuration (i) rapidly swings into a figure-eight forma-
tion traced by small clusters of six to ten agents (Figure 10
(b)). Here, the swarm constantly traverses through a limit
cycle of global states as indicated by the fast oscillating val-
ues of n̄ (Figure 9 (i)). In comparison to the line formation
experiments, the oscillation of n̄ is characteristic for figure-
eight formations. Furthermore, for configuration (i) the os-
cillation reached at about t = 20 marks a quasi steady state.

In figure-eight configuration (ii) the neighborhood per-
ception converges towards zero, and the subgroups of swarm
agents may break away during intermediary line formations.
This is similar to the second line formation experiment.

Line formations, such as illustrated in Figure 11(a) are re-
flected by the steep drops of n̄(t) in Figure 9(ii). In general,
line formations fold back quickly into figure-eight forma-
tions, as is shown in Figure 11(b).

In contrast to the line experiments, the difference between
a configuration that quickly results in a stable equilibrium
and a swarm that exhibits long periods of drastic changes
cannot be directly inferred from the according flocking pa-
rameters in Table 1. We assume that in complex figure-eight
flight patterns it becomes more difficult to identify a param-
eter, such as the random weight cr in Eq. 1, as crucial for
spontaneous behaviors.

0 20 40 60 80 100 t
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(i)

(ii)

n

Figure 9: The development of n̄ of figure-eight formations
(i) and (ii) based on the parameter sets in Table 1.

Reverse Engineering of n̄(t)

The examples in the previous section demonstrate how mea-
suring the neighborhood dynamics over time can help to de-
scribe and analyze swarming behaviors. Now, we utilize
this association to approximate neighborhood dynamics as

Figure 10: (a) Agents in figure-eight formation. (b) Tight
agent flocks (of six to ten agents) in figure-eight formation.

Figure 11: A line formation is about to collapse into a figure-
eight pattern.

they might contribute to the coordination of naturally occur-
ring phenomena, such as biological switches and clocks or
timers.

The neighborhood value ni(t) of a single agent may
change rapidly, remain fixed or oscillate. It is also easy to
discover a whole flock of agents entering an equilibrium of a
specific average neighbor value n̄(t). The results in the pre-
vious section also show that even a whole swarm can change
dynamically, or, put differently, can follow specific evolu-
tions of n̄(t).

If it was not for its contextual evolution, the average
neighborhood n̄(t) would mainly characterize the concur-
rent spread, or density, of boid flocks, thereby correspond-
ing much to the common view on molecular concentrations.
In fact, neighborhood fluctuations indicate changes in the
structure of swarms. Immediately, the question arises which
patterns of movement could one expect when looking at evo-
lutions of n̄(t) that correspond to the development of molec-
ular concentrations in biological measurements.2

Even though the expression of genes happens stochas-
2Such measured molecular concentrations may come from mi-

croarray experiments that approximately capture the number of (re-
porter) proteins over time.



tically, the levels of expression can differ greatly which
promotes the idea of a genetic switch (Jacob and Burleigh
(2004)). By the approximation of a step function for n̄(t),
we intend to show that even a homogeneous swarm could
exhibit bi-stable switching behavior. Oscillations occur in
natural systems as timers, such as circadian clocks. A a
second option, we therefore explore which swarm behav-
iors can be evolved that follow a sinusoidal neighborhood
function. For both endeavors we utilize a genetic algorithm
that operates on populations of swarms as described in the
following paragraphs.

Evolutionary Experiments
A homogeneous boid swarm, consisting of agents that
share the same control parameters, are represented by a
genotype vector ~b = (ca, cc, cs, cw, cr, vmax, amax, l, r)T .
We also want to modify the starting positions, initial
accelerations and initial velocities of the swarm agents:
init0, init1, ..., initN . The extended swarm genotype is
therefore ḡ = (~b, init0, init1, ..., initN ).

In the following experiments we provide a desired target
function x(t) for n̄ and reward its approximation with a fit-
ness value f = 1/

(∑40
t=1 |n̄(t)− x(t)|

)
. We rely on the

genetic operators of fitness proportionate selection, incre-
mental mutation and multi-point crossover on all numeric
values. A population counts 30 swarms, with each swarm
consisting of 30 agents. The genetic algorithm was run up
to 300 generations.

Step Function
As the computation of the genotype was limited to 40 simu-
lated seconds, we decided to trigger the switch at about half
of the overall time-frame. A difference of 0.5 units in a sys-
tem with values n̄ ∈ [0; 1) denotes an obvious leap, whereas
n̄ = 0.25 is large enough to allow for further swarm inter-
actions (as opposed to n̄ = 0.0 that rules out the possibility
for local interactions).

x(t) =

{
0.25 t < 22
0.75 t ≥ 22

Figure 12 displays the step function approximation of a
boid configuration that appears after 200 generations of the
outlined genetic algorithm. In Table 2 we list the parame-
ters of the best evolved swarm genotype, which reveals two
surprising values: cs = 1.0 and vmax = 0.0. In fact, the
velocity of the swarm individuals is greater than zero — the
integration step of the simulation increases the velocity in
accordance with the provided acceleration~a that is limited to
amax = 12.15. The limitation of vmax = 0.0 means that the
agent is stopped after each iteration, resulting in a very small
velocity value, yet ensuring the orientation and alignment
according to its flocking urges. As a consequence, starting
from their initial positions, the agents are slowly converging

towards each other — nicely timed with the target function.
The large weight for the separation urge cs = 1.0 prevents
the agents from getting too close and exceeding the target
value of x = 0.75. The swarm is trained to approximate
the step function for 40 simulated seconds. For that reason,
the flight parameters are delicately balanced within this time
frame. In the given example the swarm reaches an equilib-
rium shortly afterwards.
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Figure 12: A neighborhood function n̄(t) of a boid config-
uration, bred by an evolutionary algorithm, approximates
a step function as x̄(t). Afterwards, outside the evalu-
ation window the swarm drops into an equilibrium with
n̄ ∈ [0.35; 0.45].

Boid configuration for n̄ step function approximation
ca cc cs cw cr amax vmax dmin

0.37 0.86 1.0 0.44 0.48 12.15 0.0 4.89

Table 2: Evolved swarm parameters that result in the neigh-
borhood function of Figure 12, implementing a switch in
n̄(t) (α = 2.09, l = 9.32).

Sine Function
Two periods of a sine function are provided as target func-
tion x(t) for time frame of 40 simulated seconds. As in the
step function approximation, n̄ is not forced to drop below
0.25 to guarantee a minimal space for interactions.

x(t) = sin(4π ∗ t/40.0) ∗ 0.25 + 0.5

Figure 13 shows the neighborhood function n̄(t) for the
evolved swarm configuration as listed in Table 3. Eventu-
ally, at t = 1244 in Figure 14, the oscillation ends; this
is when the agents form a tight cluster orbiting around the
world center ~w.

Since complex interactions render it difficult to identify
certain flocking patterns, we activated motion blurring to



better capture the pattern formations of the swarm. We de-
termined that the oscillation happens as the biggest flock
repeatedly expands (Figure 15) and contracts (Figure 16).
Leaps from a plateau to a local maximum, as seen at t = 100
in Figure 13, occur when formerly separated flocks rejoin
(Figure 17). In Figure 18 several screenshots with activated
motion blur illustrate intermediary flight formations.
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Figure 13: A boid configuration bred by an evolutionary
algorithm approximates two periods of a sinusoidal neigh-
borhood function. As shown, the oscillations sustain even
afterwards.
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Figure 14: After about 1200 simulated seconds the oscillat-
ing swarm transitions into a steady state.

Boid configuration for n̄ sine approximation
ca cc cs cw cr amax vmax dmin

0.76 0.95 0.53 0.36 0.76 12.15 7.16 4.12

Table 3: Evolved swarm parameters that result in the neigh-
borhood function n̄(t) of Figure 13. The corresponding
swarms display oscillating behaviors (α = 2.64, l = 7.86).

Summary and Future Work
Agent states and neighborhood relations are inseparable in
swarm systems. Therefore, the dynamics of a swarm can be
measured as the fluctuations in perceived neighbors. Based
on this approach we are able to characterize the dynam-
ics of boid swarms that exhibit various flocking formations.
Hereby, we also identify phases and phase transitions of the
boid system, including limit cycles and stead states.

Vice-versa, we evolve boid configurations to approximate
characteristic neighborhood functions. Here we show that

Figure 15: The flock extends in two directions.

Figure 16: The previously extended flock from Figure 15
contracts again.

non-linear and oscillating neighborhood developments can
emerge in spatially organized homogeneous swarms that



Figure 17: A second flock approaches and joins the other
one (continued from Figure 16).

Figure 18: Motion blurring renders some of the more com-
plex flight patterns identifiable: (a) Spherical formation, (b)
a U-bent figure-eight, (c) and (d) extended figure-eights.

solely rely on linearly scaled flight acceleration based on re-
pulsion and attraction.

As in studies of complex pattern formations in two di-
mensional CA (Wolfram (1984)), experimental data sug-
gests that (1) Varying initial conditions and noise influence
the evolution of boid flocking patterns locally. The general
characteristics of the emerging patterns, however, are mainly
based on the flocking parameters of the swarm. (2) Different
swarm configurations can lead to very different pattern for-
mations. (3) Chaotic behavior — unexpected, chance-based
phase transitions — can occur in systems that initially show
orderly, periodic patterns.

For further investigation, we suggest the creation of an
abstract swarm model. It has to maintain the link between

state and neighborhood, but should be reducible to any high-
dimensional space. It would be desirable to find operators
that comply with the amalgamation of time and space, or re-
spectively structure and state, without realization of physics.
With a generalized set of operators that change states and
neighborhood relations concurrently, a systematic classifica-
tion of swarm dynamics might be possible. Thereby, swarms
could become an important model for the dynamics of com-
plex systems in general.
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