Evolutionary Swarm Design of Architectural Idea Models

Sebastian von Mammen
Department of Computer Science
University of Calgary
2500 University Drive NW
T2N 1N4 Calgary, Alberta, Canada
s.vonmammen@ucalgary.ca

Christian Jacob
Department of Computer Science
University of Calgary
2500 University Drive NW
T2N 1N4 Calgary, Alberta, Canada
cjacob@ucalgary.ca

ABSTRACT

In this paper we present a swarm grammar system that makes use of bio-inspired mechanisms of reproduction, communication and construction in order to build three-dimensional structures. Ultimately, the created structures serve as idea models that lend themselves to inspirations for architectural designs.

Appealing design requires structural complexity. In order to computationally evolve swarm grammar configurations that yield interesting architectural models, we observe their productivity, coordination, efficiency, and their unfolding diversity during the simulations. In particular, we measure the numbers of collaborators in each swarm individual’s neighborhood, and we count the types of expressed swarm agents and built construction elements. At the end of the simulation the computation time is saved and the created structures are rated with respect to their approximation of pre-defined shapes. These ratings are incorporated into the fitness function of a genetic algorithm. We show that the conducted measurements are useful to direct an evolutionary search towards interesting yet well-constrained architectural idea models.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity measures, performance measures; I.2.6 [Learning]: Induction; I.2.11 [Distributed Artificial Intelligence]: Multiagent systems, coherence and coordination; J.5 [Arts and Humanities]: Architecture; J.6 [Computer-aided Engineering]: Computer-aided design (CAD)

General Terms
Algorithms, Design

Keywords
Swarm grammar, constructive swarm, generative representation, swarm model, stigmergy, boids, complexity

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-131-6/08/...$5.00.

1. INTRODUCTION

Discoveries of intricate construction technologies applied by ancient cultures are usually met with great surprise [9]. It is generally assumed that architectural freedom evolves with scientific and technological progress [5]. Accordingly, the means to realize bold architectures have steadily grown [4]. Architects embrace the newly gained freedom — to implement almost anything conceivable — to devise innovative and compelling designs [5]. Consequently, the search for intriguing signature design ideas has shifted to the forefront of architectural work.

Inspired by building processes of social insects [7, 2] we have developed a computer-based, evolutionary swarm system to create 3D structures that lend themselves to architectural idea models [13]. Traditionally these models are the first three-dimensional realization of an architectural idea, still omitting details of its actual construction.

We have organized our paper as follows. We place our work in context in Section 2. In Section 3 we describe the swarm model that we have developed. In order to find swarm configurations that yield interesting architectural idea models we apply evolutionary computation. The interplay of genotype representation, phenotype simulation, their evaluation and deployed evolutionary operators is described in Section 4. Section 5 presents results of our evolutionary runs, followed by a summary and an outlook on future work.

2. RELATED WORK

Wasp nests, ant galleries and termite mounds are examples of the construction abilities of natural swarms [7]. Local neighborhood information, consisting of flock mates and environmental stimuli (templates), trigger the individuals’ behaviors. Step by step, intricate architectural solutions emerge while individuals transport construction elements, place pheromones and react to traces left by their mates. This stigmergy approach of nest constructions of social insects has been reproduced in computational simulations [2, 19]. Refined simulations showed that even the consideration of physical constraints (like wind) do not negatively affect the modeled decentralized swarm construction of termite nests [15].

Abstract constructive swarm models are utilized to create traditional art [3], to craft virtual artistic sculptures [11], and for interactive art performances [18, 10]. Interactively trained rule-based lattice swarms have been used to reproduce human-like architectural construction [28, 29]. While interactive evolution has proven most adequate for breeding aesthetically pleasing art works (e.g. [23, 24, 11]),
architectural designs quickly increase in complexity, thereby challenging the breeder [1]. In a semi-interactive evolutionary system the fitness of an individual is evaluated computationally as well as manually by a breeder. With the computational means to determine and compare the complexity in architectural constructions, aesthetics could remain the sole role of the breeder [17, 16].

Complexity can incorporate different aspects, such as: ecological diversity, complexity of construction (functionality), or internal complexity (also logical depth, e.g. hierarchical complexity) [22]. Different complexity measurements were tested on grammatical programs, respectively tree-like data structures, whose interpretation leads to the creation of virtual artifacts [8]. Under the assumption that a sound complexity measure scales with the size of the problem, it is suggested that the consideration of modularity, reuse and hierarchy yields reliable values of complexity.

However, these characteristics cannot be easily identified in constructive swarm systems which do not offer a one-to-one mapping from an encoding to the resulting artifact, unlike other generative representations such as L-systems [20]. Swarms are non-deterministic systems in which local interactions take place in parallel and create unforeseen interdependencies. Therefore, we need to analyze the swarm configuration, but we especially have to observe the resulting construction process to estimate the unfolding system complexity. For this purpose we measure the average number of flock mates within each individual’s neighborhood, similar to the analysis of complex networks [12, 6]. We also observe the diversity of the expressed swarms (number of swarm agent types) and consider the number of types of construction elements used in the construction process. Furthermore, we prevent an outgrowth of (computational) complexity by killing off inefficient swarms that do not terminate within a fixed time-frame. To keep the construction of a swarm within well-defined boundaries and to meet architecturally expected proportions, the approximation of predefined shapes is rewarded with an increase in evolutionary fitness [26].

3. SWARM GRAMMAR MODEL

Swarm grammars [25, 11, 27] are a very expressive artificial swarm model. They merge the interaction dynamics of boid, i.e. agent-based, swarms [21] with the reproduction abilities of a generative grammatical system, like L-systems [20]. Hence, each swarm agent follows a set of flocking urges, e.g. alignment and separation, to constantly adjust its acceleration in accordance with its local neighborhood (Figure 10), while a grammatical production system determines the individual’s transformation over time. Thus, a swarm grammar system comprises (1) a set of agent configurations, and (2) a set of production rules. Additionally, most swarm grammar models incorporate their individuals’ ability to build structures by leaving construction elements in virtual space.

In preceding swarm grammar models the agents leave behind steady traces of construction elements in space [25, 11]. As a result, many emerging structures branch according to similar to the analysis of complex networks [12, 6]. We also observe the diversity of the expressed swarms (number of swarm agent types) and consider the number of types of construction elements used in the construction process. Furthermore, we prevent an outgrowth of (computational) complexity by killing off inefficient swarms that do not terminate within a fixed time-frame. To keep the construction of a swarm within well-defined boundaries and to meet architecturally expected proportions, the approximation of predefined shapes is rewarded with an increase in evolutionary fitness [26].

3. SWARM GRAMMAR MODEL

Swarm grammars [25, 11, 27] are a very expressive artificial swarm model. They merge the interaction dynamics of boid, i.e. agent-based, swarms [21] with the reproduction abilities of a generative grammatical system, like L-systems [20]. Hence, each swarm agent follows a set of flocking urges, e.g. alignment and separation, to constantly adjust its acceleration in accordance with its local neighborhood (Figure 10), while a grammatical production system determines the individual’s transformation over time. Thus, a swarm grammar system comprises (1) a set of agent configurations, and (2) a set of production rules. Additionally, most swarm grammar models incorporate their individuals’ ability to build structures by leaving construction elements in virtual space.

In preceding swarm grammar models the agents leave behind steady traces of construction elements in space [25, 11]. As a result, many emerging structures branch according to the reproduction of the swarm agents, resulting in plant-like, organic appearances. In a virtual creative system achieving an abundance of construction elements is inexpensive. We learn from social insect swarms that when stigmergetic interplay directs the collective construction efforts, sophisticated and robust buildings can emerge (see Section 2). Thus, we have extended previous swarm grammar systems by event-based construction and reproduction rules, which we now describe in more detail.

The activation of a rule can be triggered by timers, the perception of a specific construction element or a pheromone, or plain chance. Empty rule heads result in the unconditional application of the rule body, whereas several conditions are interpreted conjunctively. Correspondingly, all directives listed in a rule’s body are executed successively. The swarm agent can change its focus (world center [21, 14]) to a nearby agent, construction element or template. It can apply a grammatical substitution, thereby reproduce itself, differentiate into one or several different agent types, or die out. Third, the agent can place a construction element or a template in space. Templates, like pheromones, disappear after a certain time and do not contribute to the outcome of the construction but help to coordinate the construction process. In our setup templates are evaluated qualitatively.
by the agents: their mere existence can influence an agent’s behavior [2]. For construction, we provide the three basic elements that are common in architecture: rods, bodies and layers [13]. Figure 2 depicts the encoding of a rule taken from an evolved swarm agent presented in Section 3: With a probability \(p = 0.5 \) the agent places a template and a cubic body construction element in space at each time step.\(^1\) In the following section we will reveal more details about an agent’s genotype.

4. EVOLUTIONARY SETUP

First, we describe how swarm grammars are encoded and modified during the evolutionary process. Second, we explain the process of fitness evaluation that directs the evolutionary search for architectural idea models.

4.1 Genotype and GA

In our breeding experiments we evolved populations of 20 swarm grammars over at least 30 generations. Each swarm grammar comprises 5 swarm agent types which are described by their flocking parameters [21, 14] and by sets of at most 10 behavioral rules as described in Section 3. As genetic operators we apply fitness proportional selection, elitism, mutation and crossover. How the two latter operate on the swarm grammar genotypes is explained in the following paragraphs. The genotypes are encoded in tagged lists of key-value pairs, as illustrated in Figure 2.

Only one fourth of the next generation is subjected to mutation which is applied with a 50% chance to each gene. Numerical values are changed in accordance with a normally distributed maximal step size of 0.2. Hereby, the following intervals are considered: The flocking weights for cohesion, alignment, separation, for the world center urge and for the random urge are normalized to values between 0.0 and 1.0. An agent’s mobility is limited to the absolute values 15 for velocity and 30 for acceleration. Its perception extends at most to a 5.0 radians radius and reaches at most ten units. The separation urge impacts an agent’s acceleration only if its neighbors are not further than 5.0 units [14]. On mutation, rule conditions and actions are equally likely generated anew, deleted, or inserted. In the generation of conditions and actions each available directive, e.g. ’Change focus’ or ’Reproduce’, are chosen with the same probability. If a directive requires a parameter, it is chosen randomly as well. For instance, if ’Construction’ has been determined as new directive, ’Rod’, ’Body’, ’Layer’ and ’Template’ are equally likely chosen as its parameter.

5/8th of the next generation of swarm grammars result from recombination of the parents. Each behavioral rule and the lists of flocking parameters that appear in the genotype of a swarm grammar are used for recombination. Here, too, we apply the operation on each considered gene with a 50% chance. An alternative crossover implementation considers only the agents of a swarm grammar for recombination. Elitism transfers the fittest eighth of the parents to the next generation.

Individuals that are not assigned a fitness value greater than zero are considered extinct. If the parent population is diminished, the genetic algorithm generates an equally reduced population of successors. However, the population is automatically filled up with newly generated swarm grammars. This mechanism counterbalances the negative influence the genetic operators can exercise due to incomputable rule sets.

4.2 Fitness Evaluation

At the beginning of a simulation all \(N \) swarm agents\(^2\) of a swarm grammar are expressed and initialized around the center of the virtual space (up to 10 units in \(x \) and \(y \) direction). Close by, at the bottom center of the pre-defined shape, at coordinates \((5,5,0)\)^2, a template appears hinting at an ideal spot for construction (Figure 3(a)). For a specified time period of \(\Delta t = 8 \text{ sec} \) the swarm agents coordinate, build and reproduce. Then the construction process is stopped, all data is written into a file and the next swarm grammar is evaluated. The fitness is evaluated based on the goals to limit computational and constructional outgrowth and to promote production, diversity and collaboration. We will explore these constraints in more detail in the following sections and then propose a fitness function that incorporates these aspects.

Figure 3: (a) Initial simulation state: 5 agents (polygons) are randomly placed in the vicinity of a template (cube). (b) Emerging structures are compared against this pre-defined shape consisting of \(10^6 \) small cubes.

4.2.1 Preventing Escalation

Uncontrolled agent reproduction can quickly lead to an exponentially growing demand for computing resources. In order to avoid such an excess of resource usage, a simulation process taking longer than 100 real seconds is terminated and is not considered for further evolution. Additionally, the computing time \(t \) for a swarm grammar is stored as a variable in order to determine a specimen’s fitness. On the one hand a certain degree of complexity in the emerging structures is desirable. On the other hand an outgrowth of (computational) complexity has to be avoided.

The same idea is realized when the swarm construction is compared against a pre-defined shape at the end of the simulation: constructions within a certain range of the target template are rewarded, whereas outgrowing the pre-defined limits is unproductive. Hereby, as in [26], the pre-defined shape consists of smaller cubes with edge size 1.0 (Figure 3(b)). We determine the ratio \(r_p \) between the number of these cubes that are penetrated by construction elements versus the total number of cubes comprised by the pre-defined shape.

\(^1\)The keyword dynamic that occurs in the rule in Figure 2 means that the body construction is rotated according to the agent’s orientation.

\(^2\)For our experiments \(N=5 \).
Adding the ratio \(r_p \) to a swarm grammar’s fitness value rewards the swarm’s productivity but only within certain boundaries. From a different perspective, it promotes constructions that retrace the provided pre-defined shape. Independently of the pre-defined shape, the total number of placed construction elements \(n_c \) can be utilized to further assess productivity and to limit the extent of construction as well.

4.2.2 Promoting Diversity

Since the construction patterns of individual swarm agents may vary, a wide diversity in constructions can be expected, that are built by a large number of different swarm agents. Even a homogeneous set of swarm agents can achieve greater diversity than a single swarm individual, as (1) the agents can influence each other’s behavior, and (2) the same construction processes can be conducted in parallel. We express these observations numerically by \(r_c \), the ratio of active agent types during a simulation to the total number of available agent genotypes, and by \(n_a_t \), the total number of expressed agents.

Whenever different types of construction elements (rods, layers, bodies) are employed, an increase in structural diversity can be expected. As a consequence, the ratio \(r_c \) of employed construction elements to the number of available types is also considered for fitness computation.

4.2.3 Fostering Collaboration

As an alternative to the deployment of construction elements, swarm agents may drop templates that do not contribute to the construction and last for a short period of time only (for 20 iterations in the presented simulations). Consequently, time-critical signals can be propagated through templates, thus promoting collaboration among the swarm agents. We therefore also measure the ratio \(r_l \) of created templates to those that actually trigger a behavioral rule.

Swarm interaction is based on each agent’s awareness of other agents. Therefore, we compute the average ratio \(r_a \) of agents that see each other to the total number of agents. For larger \(r_a \) the swarm agents stick together, whereas smaller \(r_a \) values reveal a very loose flight pattern — both of these extreme situations render collaboration difficult. For instance, a swarm grammar with \(r_a = 0.87 \) might form a clump as seen in Figure 4(a), whereas \(r_a = 0.08 \) can be an indication for uncoordinated growth as seen in Figure 4(b).

4.2.4 Proposed Fitness Function

The factors explained above are taken into consideration by the following scalar fitness function for a swarm grammar, \(f_{SG} \). The terms \(g_n \), \(g_c \) and \(g_a \) transform the corresponding variables to normalized values between 0.0 and 1.0 according to their semantics: A neighborhood ratio not too close to 0.0 or 1.0 is presumably beneficial. Reasonable amounts of expressed agents and placed construction elements are contributing to the fitness as well, especially if these efforts do not overly extend the computation time \(t \). We therefore arrive at the following fitness function:

\[
 f_{SG} = r_p + r_a + r_c + r_l + g_n + \frac{g_c + g_a}{\max(t, 1)} \\
 g_n = \sin(\pi \cdot r_n) \\
 g_c = \sin(\pi \cdot 0.005 \cdot \min(n_c, 200)) \\
 g_a = \sin(\pi \cdot 0.005 \cdot \min(n_a, 200))
\]

This fitness evaluation is used in our experiments, which we describe in the following section.

5. RESULTS

A successful search for architectural idea models heavily depends on the effectiveness of the genetic algorithm, especially on the crossover operator and on the fitness evaluation. Therefore, we first discuss our findings about the influence of the operator and fitness function on the resulting architectural constructions, before a variety of phenotypes is presented and analyzed.

5.1 Fitness Evolution and Crossover Points

Figure 5 depicts representative graphs of the fitness evolution in two independent experiments.

In the first experiment we apply a crossover operator \(c_1 \) on rules and sets of flocking parameters only. In the second experiment each of the swarm grammars’ \(N \) agents is considered for recombination (crossover operator \(c_2 \)). The average and the maximum fitness values of each generation are shown in the graphs avg.\(c_1\) and max.\(c_1\) in regards to \(c_1 \), and in avg.\(c_2\) and max.\(c_2\) in regards to \(c_2 \), respectively.

Elitism ensures that the best individuals are transferred unchanged into the next generation. Noise in the sequence of maximum fitness values (max.\(c_1\) and max.\(c_2\)) is due to randomness in the simulations. As shown, max.\(c_1\) usually rises slower but does not differ much from max.\(c_2\). The development of average fitness values is of particular interest. The tendency of avg.\(c_1\) to stay considerably below avg.\(c_2\) is not a coincidence. If only agents of relatively successful swarm grammars are exchanged, the offspring’s success mainly depends on the agent interaction encoded in their behavioral rules. Underachievement and thereby extinction can happen, but is less frequent than with recombination working on the building blocks of the agents’ genotypes. Especially
the exchange of behavioral rules can lead to a swarm grammar’s quick extinction. As soon as the agents reproduce themselves too frequently, the computing time rises and can easily exceed the maximum allowed timeframe. While the average fitness of the crossover on agents achieves a better development, the other crossover operator leads to a population of much greater diversity. On the one hand, the recombination possibilities are much greater when genetic information on the agent behavior level is considered. On the other hand, the high extinction rate allows new genotypes to enrich the gene pool.

In our experiments certain fitness properties were obtained faster than others. \(r_p, g_n, g_c \) and \(g_a \) had fast and great impact on \(f_{SG} \) and, consequently, on the evolutionary development. We were not able to promote rising values for \(r_n \), and \(r_c \) which mostly exhibited erratic changes, or for \(r_l \) which did not contribute at all. Consequently, the following, simplified fitness function might have sufficed to breed the presented examples.

\[
f_{SG}^{simple} = r_p + g_n + \frac{g_c + g_a}{\max(t,1)}
\]

Also, since the ‘tasks’ that correspond to the ineffective variables seem too difficult to be learned instantly, either partial task fulfillment (e.g. first, the placement of a template and second, the response) should receive a reward. Alternatively, the generation of behavioral rules could be constrained, thereby reducing the search space for ‘useful’ rules.

5.2 Architectural Designs

The outlined experimental setup results in a wide variety of architectural designs, a selection of which is presented in the following paragraphs. We differentiate between three structure categories depending on the actual construction elements: rod, body or layer. This classification schema concurs with actual architectural categories [13]. Additionally, we introduce a category for swirly architectural idea models.

The discussion of the examples underlines that the mapping from a swarm grammar genotype to the corresponding structure is not trivial. The provided characteristic measures drive the evolutionary process, yet one can hardly infer specific architectural categories from these measures, as we will demonstrate.

5.2.1 Rod Architectures

Figure 6 shows four examples of constructions in which rods dominate their visual character. In fact, the structure depicted in Fig. 6(c) only comprises about 60 rods, a mere 3% of the employed construction elements. The remaining three architectures, Fig. 6 (a), (b) and (d), however, are based on 50% to 60% rods. Investigation of the genotypes reveals that the rod-architecture swarms’ behaviors are not synchronized through timer conditions. In general however, they exhibit rule conditions similar to those of the following examples (44% unconditional, 18% probabilistic, 15% on template sight, 14% on agent sight, and 10% timers).

The presented swarm grammars’ tracing success value \(r_p \) and neighborhood perception \(r_n \) are listed in Table 1.

The four phenotypes displayed in Figure 6 show a nice diversity. Fig. 6(a) exhibits three completely different segments, arranged from left to right. The first looks like a pile of sheets, the second like a spiky armor and the third does not only mix cubic construction elements and elongated rods, but also mixes two colors. The model in Fig. 6(b) can also be divided into three parts. From the bottom-left of the image a lattice tail loosely connects to the main part of the model. From there on, rods are laid out horizontally resembling stairs that lead to the top of an impenetrable spherical heap of rods. Fig. 6(c) shows a multifarious construction. Cubic elements are arranged at the bottom and the top. They are interconnected with a densely packed, dynamically shaped hose. Rods are floating in a wave-like fashion around the model’s peak. Model Fig. 6(d) embodies the swarm dynamics of the construction process. The movements of the flocks of swarm agents create the impression of dynamic parts. This vivid impression is supported by the rough looking combination of layers and rod elements.

<table>
<thead>
<tr>
<th>Model</th>
<th>(r_p)</th>
<th>(r_n)</th>
<th>Model</th>
<th>(r_p)</th>
<th>(r_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 6(a)</td>
<td>0.89</td>
<td>0.16</td>
<td>Fig. 8(a)</td>
<td>0.77</td>
<td>0.51</td>
</tr>
<tr>
<td>Fig. 6(b)</td>
<td>0.59</td>
<td>0.50</td>
<td>Fig. 8(b)</td>
<td>0.71</td>
<td>0.30</td>
</tr>
<tr>
<td>Fig. 6(c)</td>
<td>0.98</td>
<td>0.41</td>
<td>Fig. 8(c)</td>
<td>0.85</td>
<td>0.54</td>
</tr>
<tr>
<td>Fig. 6(d)</td>
<td>0.19</td>
<td>0.43</td>
<td>Fig. 8(d)</td>
<td>0.53</td>
<td>0.19</td>
</tr>
<tr>
<td>Fig. 7(a)</td>
<td>0.30</td>
<td>0.28</td>
<td>Fig. 9(a)</td>
<td>0.81</td>
<td>0.35</td>
</tr>
<tr>
<td>Fig. 7(b)</td>
<td>0.32</td>
<td>0.005</td>
<td>Fig. 9(b)</td>
<td>0.55</td>
<td>0.52</td>
</tr>
<tr>
<td>Fig. 7(c)</td>
<td>0.80</td>
<td>0.10</td>
<td>Fig. 9(c)</td>
<td>0.89</td>
<td>0.64</td>
</tr>
<tr>
<td>Fig. 7(d)</td>
<td>0.75</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Characteristic values of the presented swarm grammar architectures.

5.2.2 Body Architectures

Figure 7 presents architectural idea models that are mainly assembled of (cubic) body construction elements. In fact, their share of all utilized construction elements varies be-
between 30% and 50%. Simple as it might appear, the construction in Fig. 7(a) achieves a very good approximation of the pre-defined shape (Table 1) and grows an extended set of bodies and rods on top of the bottom-up sequence of layered elements. The second example, Fig. 7(b), is distinct by its sparse use of different construction elements. An interplay of flocking swarm agents is obviously not required for the displayed model, as an extremely short perception radius of 0.6 units (maximally 10.0) keeps the swarm agents’ neighborhood perception very low (Table 1). Fig. 7(c) presents a futuristic design that emerges through three interwoven construction mechanisms. (1) Cubic body elements form the main part of the model. (2) Layers flank the main part along the entire edge length. (3) Both layers and cubic body parts are rising in tandem to complete the construction with an elevated, inclined platform. The construction rule shown in Figure 2 belongs to an agent involved in the construction of Fig. 7(c). In fact, another rule makes the same agent differentiate upon sight of a body construction. The last instance of body-based architectures is shown in Fig. 7(d). Here, a dynamic character is introduced into the otherwise rather strict body architectures as seen in Fig. 7(a), (b) and (c).

5.2.3 Layer Architectures

Figure 8 displays four tower constructions that are coined by the employment of layer construction elements. In fact, Fig. 8(c) only utilizes 5 layers that can be spotted at the bent, the remaining 99.95% of the model consist of rods and body construction elements. Fig. 8(a) and (b) look very similar. Yet, they originated from completely independent experiments. Their characteristic values, too, resemble each other, except for the neighborhood ratio \(r_n \) (Table 1). Figures 8(a) and (b) consist of 25% and 17% layers, respectively. During both construction processes, agents transform/reproduce 15 times. Their visual resemblance is striking: From the bottom a rather rigid and straight stem is drawn upwards for about \(3/4 \) of the total height. Then, body construction elements rise to a podium that is ornamented by several rods. During the construction of Fig. 8(d), agents reproduce 76 times. The increasing number of identical agents steadily widens the diameter of the construction (67% layers). The interplay of the swarms results in a rhythmic construction pattern that gains momentum towards the model’s peak.

5.2.4 Swirly Architectures

Figure 9 presents three architectures that embody the actual swarm dynamics during the construction processes. In Fig. 9(a) a homogeneous set of five agents swarms around a rising path while dropping layers and rods. The resulting
construction receives good credit for the approximation of the pre-defined shape and proves that a relatively low neighborhood ratio \(r_n = 0.35 \) may very well lead to an intriguing, vivid swarm architecture (Table 1). The skeletal structure of Fig. 9(b) is assembled of rods and body construction elements. Several swarm agents wrap around and cement the inner construction with waves of rods. Crucial for this interplay is the probability-driven reproduction of the ‘foremen’ and their differentiation into mere operative swarm agents that do nothing but place construction elements. The emergence of a tight flocking pattern also strongly influenced the outcome. Figure 10(a) depicts the whole set of flocking parameters that determine the operative agent’s flight. Cohesion and alignment are forces to keep the agents orderly together. When combined with a tendency for separation and randomness, the bulge formations can emerge. Fig. 9(c) displays a very complex swarm grammar: During the construction process agents spawn 725 times which might have led to the long computation time of \(t = 63.3 \text{ sec} \). During the interplay of the expressed swarm agents, one of them is responsible for the reproduction and differentiation — the corresponding behavioral rule is displayed in Figure 10(b). One agent only places rods, another one only layers. The fourth involved agent places a rod, a body and a layer all at once but with a very low probability \(p = 0.2 \).

6. SUMMARY AND FUTURE WORK

We have presented an extended swarm grammar model that is capable of stigmergic construction of architectural idea models. In order to guide the evolutionary search we prevent structural and computational outgrowth by rewarding the approximation of a pre-defined shape and fast computation. Productivity, diversity and collaboration are furthered by counting events of construction, reproduction and by measuring neighborhood perception. Examples of successfully bred swarm architectures are presented and discussed. Although the introduced measures are efficient to guide the evolutionary search for innovative architectures, they cannot be directly linked to the architecture’s properties.

For future work we consider the following steps. (1) Investigation of the temporal development of the perceived neighborhood ratio \(r_n \), where a series of cyclic or jumping...
values might bear constructions different from those emerging based on constant values. (2) Providing incentives for stigmergic interdependencies to further collaboration. (3) Exploration of the impact of alternative pre-defined shapes (e.g. convex geometries) on the diversity and the design of emerging architectures. (4) Protocols of our evolutionary experiments underline the importance of an effective fitness function and effective genetic operators. Here, too, further investigation is necessary to find an optimum for diverse, appealing, and fit constructions that further facilitate the exploration of architectural idea spaces.

Evolutionary swarm design of architectural idea models works. However, in order to render this technology applicable for architects it has to be fitted according to their needs. Hereby, the main goals are the input of stronger constructive limitations as well as an interactive way to promote the development of compelling designs.

7. REFERENCES