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Abstract. The swarm metaphor stands for dynamic, complex interac-
tion networks with the possibility of emergent phenomena. In this work,
we present two games that challenge the video player with the task to
indirectly guide a complex swarm system. First, the player takes control
of one swarm individual to herd the remainder of the flock. Second, the
player changes the interaction parameters that determine the emergent
flight formations, and thereby the flock’s success in the game. Addition-
ally, a user-friendly interface for evolutionary computation is embedded
to support the player’s search for well-performing swarm configurations.

1 Introduction

AI algorithms have been successfully applied in computer games for pattern de-
tection in human-computer interfaces [5] or for non-player character optimiza-
tion, i.e. shortest path search [10] and planning [11]. We propose that bio-inspired
methodologies might directly offer new approaches to game principles.

In this work, artificial swarms confront the player with a novel perspective:
(1) When partaking in a flocking collective, and (2) when conjuring and utilizing
emergent flocking formations by regulating a swarm’s underlying interaction
parameters. We present game concepts including mission statements, level design
and user-interaction elements that support both approaches. The interaction
patterns in artificial swarms can be highly dynamic and complex. In order to
handle this complexity, we provide evolution-based mechanisms to breed swarm
configurations in an intuitive manner. To our knowledge, no similar swarm-based
games have been presented in the past.

In the next section, we briefly introduce the scientific background for the
presented work and related games. In the two subsequent sections we draw a
comprehensive picture of two fully-featured, swarm-based games. Finally, our
results are briefly summarized, and we suggest future steps for expanding our
swarm-based gaming concepts.

2 Swarms & Emergent Gaming

In 1987 Reynolds presented a simulation concept that mirrors the flocking dy-
namics of birds [12]. In his model, a simulated virtual bird i, also called boid, is
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represented as a pyramidal graphical object oriented towards its velocity −→vi . In
order to be able to react to its neighbors, a boid possesses a conic field of percep-
tion that is determined by a radius r and an angle α. Rather loosely, Reynolds
explained which accelerating urges are triggered by the flocking mates perceived
in their neighborhood. Alignment adjusts the direction to the neighbors, cohesion
draws the individual towards its neighbors, and an urge for separation prevents
the boids from bumping into each other. Combined with some randomness, these
rudimentary urges suffice to let large crowds of agents flock smoothly in virtual
3D spaces.

Many AI development frameworks provide a basic boid implementation [4, 8,
1, 19]. Our present boid simulation mainly follows the implementation discussed
in [9, 17]. In a first step, the neighborhood of each individual is re-calculated
based on position updates of the last iteration. The set of neighbors is used to
calculate the urges of separation, alignment, and cohesion, as well as an urge
towards the world center and a random vector. The classic boid urges are nor-
malized through division by the number of considered neighbors, the world center
and the random urges renormalized to unit-vectors. An individual’s acceleration
is computed by the weighted sum of urges, whereas the weights are part of the
swarm agent’s configuration. Both acceleration and velocity are limited by a
maximal value (again part of the configuration). In a second step, each boid’s
location is (simultaneously) updated.

As repulsion from the neighboring mates can lead to sudden flock dispersions,
we calculate the separation urge as the sum of deflection vectors from the mates.
The deflection is calculated by reflecting the vector from the individual to its
mate in respect to the individual’s velocity. Alignment is simply implemented
as the sum of the neighbors’ velocities. Cohesion is calculated as the sum of
distance vectors. Detailed formulas are provided, for instance, in [17].

Knowing the swarm individuals’ positions and orientations, as well as the
dimensions of their fields of perception, the interdependencies of a given swarm
can be inferred. However, we implemented and tested two visualization methods
in order to enhance the gaming experience. Figure 1(a) shows a set of boids
flocking in a loose cluster formation. The individuals’ orientation is indicated by
their rotation. In Figure 1(b) the fields of perception are illustrated. The visual-
ization methods in Fig. 1(a) and 1(b) are adapted from Reynold’s original boids
publication [12]. When connecting all neighboring boid agents as in Fig. 1(c),
the flock appears as a continuously changing interaction network, as suggested
in [17]. The field of view visualization (Fig. 1(b)) allows the player to better
understand the swarm’s movements. The network visualization (Fig. 1(c)) can
facilitate the game play, especially since dependency chains are depicted that
determine the success of herding or dragging tasks in the game, as we explain in
Section 3.

The idea to use artificial swarms in video games becomes obvious when ex-
periencing interactive swarm art installations. Jacob et al., for instance, have
demonstrated the interactive potential of swarm simulations steered by video-
captures of the audience’s movements [6]. The natural feel to its smooth motions,
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(a) (b) (c)

Fig. 1. (a) A boid flock in a loose formation. (b) The geometric fields of perception
are illustrated. (c) Edges depict the qualitative interaction network.

the perceived liveliness of the swarm motivates the audience to explore its re-
sponsiveness and to enjoy swarm-generated melodies or virtual paintings drawn
during the flock’s movements. The interactivity of artificial music-generating
swarms even supports live performing musicians [3, 2]. An example for an au-
tonomous model is given in AtomSwarms where music generating agents evolve
and self-organize in a complex eco-system [7]. Within AtomSwarms and during
live performances a conductor can change the population size of the interac-
tions, but is not provided with the means to directly interfere in the simulation.
In other contexts, artificial swarms were bred in well-directed evolutionary runs.
The characterization of boid flocks based on the average neighborhood percep-
tion allowed to track the changes within the boid interaction network and breed,
for instance, an oscillating flock formation [17]. On the other hand, boid swarms
were bred by means of interactive evolution to exhibit various flocking forma-
tions [9]. Interactive evolution was also applied to explore the capabilities of
swarm systems called Swarm Grammars that build three-dimensional structures
[16]. In these experiments, so-called breeder volumes were introduced that apply
the genetic operators mutation and recombination to swarm individuals that are
passing through.

3 Herding Cattle

In our first swarm-based game prototype, the player is directly immersed in the
process of flocking formation. In particular, the player’s task is to influence the
overall flock, while only navigating one swarm individual. In order to manage this
task, one quickly has to gain an intuitive idea of how to control an individual’s
flight pattern, while taking into account neighborhood relations and affects on
overall acceleration behaviors. These skills, in tandem with the player’s fast
identification of, for example, appearing obstacles and reaction abilities are the
ingredients of this basic game concept.

A simple game setup challenges the player to get a number of swarm agents
from a starting area to a goal location. Figure 2 shows a screenshot of an ac-
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cording implementation3 in the programming environment Processing [1]. In the
following paragraphs, the various elements of the screenshot are magnified and
explained in detail.

Fig. 2. Screenshot of a 2D boid herding game. The player’s swarm individual (high-
lighted by three white arrows) drags a “tail” of associated agents into the goal.

3.1 Playground Interactions

At the beginning of the game, the swarm individuals are positioned in the bottom
left corner of the playground (Fig. 3(a)). The player has to herd the flock into
the upper right corner (Fig. 3(b)) only by steering one individual that follows
the coordinates of the mouse. When the player steers its individual beyond the
perceptional range of its peers, they fall behind. If the guiding individual moves
too swiftly, it does not exercise a great impact on its mates’ flight momentum. On
the way to the goal, there are several obstacles denoted as circles and rectangles.
The swarm agents deflect from the four circles (Fig. 3(c)), bounce off the dark
bar next to the goal ((Fig. 3(d)), and change their flocking configurations, if
they pass through the stripe below the biggest circle. The latter effect is, in
fact, implemented as a genetic mutation operator [16]. Analogously, the swarm
agents’ configurations can be understood as their genotypes, their geometric
representation and exhibited behaviors as phenotypes.

3 Its development started on the basis of Daniel Shiffman’s boid implementation
“Flocking” that is included in Processing’s examples library.



5

(a) (b) (c) (d)

Fig. 3. Level design constituents of a herding game prototype.

3.2 GUI for Genetic Manipulation

Different information about the game is displayed on the black stripes at the
bottom and the top. In the upper left corner, the time is shown that has elapsed
since the game started. As in many other games, timing is a simple means to
measure the efficiency of the player’s mastery. On the right-hand side of the
upper stripe are three knobs to adjust the swarm agents’ fields of perception
(Fig. 4(a)) and two more to set the maximal values for acceleration and velocity
(Fig. 4(b)). They are followed by five sliders that control the weights of the
agents’ flocking urges (Fig. 4(c)). The last slider is colored in a different shade.
It does not change the swarm’s properties, but changes the integration step size of
the simulation. Changes through this graphical user interface4 are applied either
to all swarm agents or to selected individuals (Fig. 4(d)). Differences among
the individuals are depicted in the bottom graphic in Figures 2 and 4(d). The
parameter values are mapped to color values between 0 and 255 corresponding
to black and bright green, respectively. One column of pixels represents the
genotype of one individual.

4 Crows in the Cornfield

In a second swarm game, the player does not interact with the swarm spatially,
but exclusively changes its genotype. The metaphor of the game is a flock of
crows that feeds on corn. The same GUI as in the previous game is utilized to
configure and thereby direct the flock towards the corn and to maximize the
harvest. At the same time, the swarm individuals interact with various objects
(as in Section 3), and are even endangered to fly into deathtraps. The latter
ones are depicted as the bright rectangular areas in Figure 5. The even brighter,
circular spots represent growing corn, the black areas repelling objects. The game
ends when all swarm individuals have died. The objects on the playground along
with the crops are constantly scrolling towards a random direction. Thus, the
flock is confronted with a changing configuration, and the player has to be quick-
witted to ensure the flock’s survival and a successful harvest. Two GUI elements
are different from the previously described herding game: (1) The harvesting

4 We rely on the controlP5 GUI library by Andreas Schlegel (http://www.sojamo.de).
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Fig. 4. Graphical user elements allow to change (a) an agent’s field of perception, (b)
its maximal velocity and acceleration, and (c) its flocking weights. (d) A selected agent
is rendered in a different color.

score is displayed in the upper-left corner. (2) An additional slider is depicted
left of the knob for radius adjustments. By means of this slider, the player can
choose one of a set of previously stored swarm genotypes. The selected swarm
genotype is immediately deployed in the game, thus facilitating the player’s task
of parameter-based, indirect swarm navigation.

4.1 Evolving Swarm-Macros

As part of the game, but before the player is actually urged to control the flock,
two ways are offered to create an assortment of swarm configurations. As seen
in Section 3.2, swarm configurations can be manually designed and tested. Al-
ternatively, the player may rely on computational evolution to automatically
breed a swarm genotype. By placing a number of tiles on the playground, the
player determines where the swarm individuals should be flocking (Figure 6).
This alternative evolutionary way to give rise to swarm configurations with spe-
cific trajectories is quite important. Manual adjustment of a swarm’s flocking
parameters can be a very challenging task, that could easily frustrate the player.
The implemented breeding approach is similar to the evolution of constructive
swarms based on predefined shapes [18]. This implements interactive guidance of
the evolutionary development not unlike the immersive “gardening” techniques
presented in [16]. The idea to train agents and deploy them during a game has
been brought about on numerous occasions, e.g. in [14] or in Creatures (most
recent release in 2003, Creature Labs).
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Fig. 5. Screenshot of the game “Crows in the Cornfield” in which the player maximizes
the flock’s harvest by changing its configuration.

(a) (b)

Fig. 6. (a) A flock has learned to swarm to the edges of the playground. (b) The flight
in formation of a broad stripe maximizes the flock’s reward when hitting the tiles.

fswarm =
1
ia

∑
i

∑
t

min(c(t, i), cmax), with cmax =
a

t
(1)

When entraining a swarm, the fitness function given in Equation 1 is applied to
evaluate its performance. With a as the number of swarm agents, t the number
of tiles, i the number of iterations and c(t, i) as the number of collisions between
swarm agents and a tile t at iteration i, the function can be read as follows: Over
all iterations of a flocking simulation, each collision between an agent and a tile
is considered for reward. However, in the case of a perfect distribution over the
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given tiles, there should only be up to cmax agents on one tile. The final sum is
normalized by the product of iterations and the number of swarm agents.

With the next generation composed of 50% recombined and 50% mutated
material (with a mutation probability p = 0.2 on single flocking parameters), we
successfully bred exemplary flocks. In Fig. 6(a) a swarm breaks up into several
groups that are heading towards the edges of the playground, where they hit the
tiles placed by the user. In another experiment, the flocking formation shown in
Fig. 6(b) achieved a high fitness value. The similarity between the shape of the
swarm formation in upper-right corner and the tiled area is notable. Another
specimen of the same evolutionary experiment is presented in Figure 7. With
the world center as the sole geometric point of reference, a solution to the given,
non-symmetrical task is promoted that utilizes the general setting and a great
degree of randomness. In Fig. 7(a) the flock radially expands from its origin.
When repelled from the edges, it breaks into four parts (Fig. 7(b)). To the left
and the right of the playground, two swarm groups re-emerge heading back
towards the world center (Fig. 7(c)). This strategy results in an effective pass
over the tiles to the left center of the playground (Fig. 7(c) and (d)).

(a) (b)

(c) (d)

Fig. 7. An evolved swarm relies on interactions with the environment in order to hit a
non-symmetrically placed tiled area.
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5 Results

We have presented two games that rely on swarm-dynamics. A herding game
is introduced in which the player effects the directed flocking of a swarm by
taking control of only one individual. This prototype tests the idea of player
immersion in a dynamic, complex swarm system. With an obediently following
swarm configuration the herding game poses a task as unambitious as finding
the path through a maze from a top view. However, the challenge is increased by
changing the swarm individals’ genotypes when flying over a mutation area. An
intuitively operable GUI lends itself to the player to limit the damage. Control of
the flock can be regained by patching single flocking parameters, by reconfiguring
a group of swarm individuals to out-balance the maladjustment, or by canny
flight maneuvers of the single individual that is manually steered by the player.

Second, a flock of virtual crows is controlled solely through manipulation of
their interaction parameters in order to maximize their corn harvest. In addition
to real-time adjustments of the swarm individuals as in the herding game, the
player may breed assortments of swarm configurations upfront and deploy them
afterwards in the game. This evolutionary component is especially important as
designing specific flocking configurations can be a frustrating and tedious task.

6 Conclusion and Future Work

The fact that both presented games are embellished with additional game el-
ements—for instance repelling blocks, deathtraps, time and score measures—
cannot hide their prototypic character. Emphasis was put on testing ideas of
player immersion in an artificial swarm. Both games live on an intuitive under-
standing of the swarms’ flocking dynamics and on the players’ skilled control.
We believe that they have great potential to grow mature and to seemlessly
incorporate many other gaming concepts, for instance realizing the swarm as a
cooperative multi-player game.

As a next step, however, it would help to measure, rate and eventually im-
prove the games in regards to basic aspects such as the means to control, (re-)
configure and breed the swarms and the clarity of the immediate goals [15].

Swarms serve as a metaphor for highly dynamic complex systems [17]. As
such, an improvement in understanding their intrinsic dynamics and in their
control supports endeavors in all kinds of undertakings, whether they are eco-
nomically or ecologically motivated. Therefore, we hope that by promoting the
swarm metaphor in computer games, we foster the comprehension and mastery
of other complex systems around us.
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