
UNIVERSITY OF CALGARY

Swarm Grammars:

Modeling Computational Development

through Highly Dynamic Complex Processes

by

Sebastian von Mammen

A DISSERTATION

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHYs

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

May, 2009

c© Sebastian von Mammen 2009

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies
for acceptance, a dissertation entitled “Swarm Grammars: Modeling Computational Develop-
ment through Highly Dynamic Complex Processes” submitted by Sebastian von Mammen in
partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHYs.

Supervisor,
Dr. Christian Jacob
Department of Computer Science

Supervisory Committee,
Dr. Jörg Denzinger
Department of Computer Science

Supervisory Committee,
Mr. Gerald Hushlak
Department of Art

Internal External,
Dr. Ken Fields
Department of Art

External,
Dr. Una-May O’Reilly
Massachusetts Institute of Tech-
nology, Boston, USA

Date

ii

Abstract

We have developed swarm grammars (SGs) as an integrated representation of artificial swarms

and developmental models. SGs have evolved in three steps: basic swarm grammars [1–

3], extended swarm grammars [4, 5] and swarm graph grammars (SGGs). In this thesis, we

present each of these types of SGs together with their respective motivations. We dedicate

chapters to the evolutionary exploration of SGs and their application in interdisciplinary works

in the fields of art [6] and architecture [4, 6]. The breeding methods we applied for evolving

architectural design required the introduction of complexity measures in SGs. These in turn

triggered a study on swarm networks [7] that promoted the development of SGGs. Through

SGGs, swarm grammars have matured into a universal, bio-inspired modeling framework for

complex developmental systems.

iii

Acknowledgements

Rarely, I have found a person that is similarly motivated for dedication through personal free-

dom as I am. Luckily, my supervisor Christian Jacob shares this preference and has always

granted me more freedom than anyone could have expected—in respect to my research, to

needed logistic arrangements and to scientifically motivated travels. At the same time, Chris-

tian’s praise of my achievements, his kind responsiveness and insightful advice frequently

recharged my enthusiasm and optimism. His generosity and providence have been an infinite

source of motivation.

Many thanks also go to the other two members of my supervisory committee Jörg Den-

zinger and Gerald Hushlak. Taking an excellent course on multi-agent systems, I had the

opportunity to learn first-hand about Jörg’s research which has accompanied my studies ever

since. He also greatly supported me with concise and helpful advice for my thesis work and

through countless reference letters for various scholarship applications. I know from the rat-

ings alone, that if only his reference letters had been counted, I would have been blessed with

a comforting financial cushion throughout my Ph.D. work.

In Jerry I found a patron for my inclination to exercise the visual arts. He opened many

doors for me to broaden my horizon and to experience the world from new perspectives. During

sizzling discussions about digital creativity, Jerry worked hard to convey limitless creativity and

productivity. This spirit nourished me whenever I felt like starving in webs of formalisms that

I had trapped myself in.

Una-May O’Reilly and Ken Fields joined the committee for my last defense. Thank you

greatly for your efforts, your welcome feedback and your insightful advice.

I also want to thank many other academics who provided invaluable feedback during my

dissertation: Julian Togelius, Richard Levy, Peter Deacon, Priscilla Greenwood, Gabriella

Kókai, Mary-Ann Hushlak-Fraser, Daniel Röhr, Martin Despang, and Illaria Mazzoleni.

iv

The feeback from members of my research group, the department of Artificial Intelligence

and the Evolutionary & Swarm Design lab, deserve special credit. I gained a lot of insight

from discussions with Marcin Pilat, Lance Hanlen, Navneet Ballah, Jan-Philipp Steghöfer,

Scott Novakowski, Scott Steil, Ryan Moniz, Ian Burleigh and Namrata Khemka.

During the explorative phases of my research, interdisciplinary collaborations gained great

importance. I would like to thank Joyce Wong for her continuous dedication to swarm art,

Thomas Wissmeier for his inspirational contributions to the Swarm Momentum exhibition. Naz

Erfan, already an invaluable supporter of the art exhibition, joined the supporters of my archi-

tectural endeavors. In this context, John Holash and especially Wayne Long provided great

help. In the field of biology, Florian Menzel, Kerstin Fröhle and Guy Theraulaz deserve my

gratitude for providing important illustrations and references.

I would also like to thank Jon Klein, creator of the simulation environment BREVE [8],

for his immediate responses on my inquiries, and to Jürgen Schneider who introduced me to

graph transformation systems and offered his graph visualization package for the LATEX text

processing system [9].

Of course, without the corresponding infrastructure, my work would not have been pos-

sible. Therefore, I’d like to especially thank Camille Sinanan, Lorraine Storrey and Jennifer

Erno of the Department of Computer Science, as well as Sheila Harland, Rick Calkins and

Nathan Tremblay of the Department of Art.

The greatest support I have been receiving came from the families Novakowski, Jacob,

Hushlak and my own. I consider myself very fortunate to be given your love and support.

Without you, my studies would not have prospered so well, or might not have taken place at

all. Thank you.

v

Table of Contents

Approval Page . ii
Abstract . iii
Acknowledgements . iv
Table of Contents . vi
List of Tables . viii
List of Figures . ix
1 Introduction . 1
2 Related work . 5
2.1 Social insects, nests and the stigmergic script 6

2.1.1 Collective construction processes . 7
2.1.2 Nest architecture . 9

2.2 From developmental models to complex systems 13
2.2.1 Cellular automata . 13
2.2.2 Artificial chemistries . 14
2.2.3 L-systems . 16
2.2.4 Universal CDMs . 18

2.3 From developmental models to creative design 19
2.3.1 Evolving art & design . 20
2.3.2 Integrating organic and functional design 22

2.4 Evo-devo: development on multiple scales . 23
2.4.1 The evolution of evolution . 24
2.4.2 Gene regulation and embryonic systems 25
2.4.3 Artificial neural nets and morphologies 26
2.4.4 The spatiality of evo-devo models . 27

2.5 Complexity . 28
2.5.1 Categories of complexity: identifying complex phenomena 29
2.5.2 The cause of complex behaviors . 31
2.5.3 Measures of complexity: quantifying different complex phenomena . . 32

2.6 Completing the cycle: complex and constructive swarms 33
2.6.1 Natural swarms are complex systems 34
2.6.2 Flocking models . 34
2.6.3 Physical investigations into swarm systems 35
2.6.4 Swarm art . 37
2.6.5 Evolving swarms . 37
2.6.6 Constructive swarm models . 40

3 Swarm grammars . 44
3.1 Basic swarm grammar system . 45

3.1.1 The swarm grammar . 45
3.1.2 SG agent behavior . 47
3.1.3 Pseudocode . 48

3.2 Exploring the basic swarm grammar model 51

vi

3.2.1 Changing the SL-system rules . 51
3.2.2 Changing the agent parameters . 54
3.2.3 Interaction with the environment . 56

3.3 The extended swarm grammar model . 60
3.3.1 Swarm grammar art . 61

4 Breeding swarm grammars . 67
4.1 Interactive evolution . 67
4.2 Immersive evolution . 74

4.2.1 Spatial breeding operators . 75
4.2.2 The swarm grammar gardener . 76

4.3 Automatic evolution . 79
5 Swarm grammar architecture . 81
5.1 Evolutionary setup . 81

5.1.1 Genotype and GA . 81
5.1.2 Fitness evaluation . 83

5.2 First results of bred SG architecture . 86
5.2.1 Fitness evolution and crossover points 87
5.2.2 Architectural designs . 89

5.3 Ecological features of swarm constructions 98
6 Swarm complexity . 99
6.1 Swarms as a model of complexity . 100
6.2 Analysis of flock formations . 102

6.2.1 Line formations . 103
6.2.2 Figure-eight formations . 108

6.3 Reverse engineering of n̄(t) . 111
6.3.1 Evolutionary experiments . 112
6.3.2 Step function . 113
6.3.3 Sine function . 114

6.4 From investigations into the complex toward a new swarm model 116
7 Swarm graph grammars . 120
7.1 A swarm graph grammar system . 121

7.1.1 Swarm individuals . 122
7.1.2 Computational complexity . 126

7.2 SGG examples . 127
7.2.1 Boids with SGGs . 127
7.2.2 Swarm grammars with SGGs . 130

7.3 Status quo of swarm graph grammars . 136
8 Summary & future work . 137
8.1 Chapter-based résumé . 138
8.2 Future work . 140

8.2.1 Swarm-driven architecture . 141
8.2.2 Working with swarm graph grammars 143
8.2.3 Virtual walk-through of an interactive swarm design process 145

Bibliography . 147

vii

List of Tables

3.1 Flocking parameter sets that lead to: (1) the so-called large ring formation, (2)
a line formation, (3) a loose stationary cluster swarm, and (4) a messy figure
eight formation [83, 84]. 54

3.2 Flocking parameters of a set of agents. 56

5.1 Characteristic values of the presented swarm grammar architectures. 91

6.1 Evolved parameter sets for ‘choreographically‘ flocking swarms [83]. 103
6.2 Evolved swarm parameters that result in the neighborhood function of Fig-

ure 6.11, implementing a switch in n̄(t) (α = 2.09, d = 9.32). 114
6.3 Evolved swarm parameters that result in the neighborhood function n̄(t) of

Figure 6.12. The corresponding swarms display oscillating behaviors (α =
2.64, d = 7.86). 115

viii

List of Figures

1.1 (a) A flock of virtual birds, or boids [13], in a loose flight formation. (b) The
model assumes the illustrated geometric fields of perception of the boids. (c)
Edges depict the continuously changing qualitative interaction network among
the boids. 1

2.1 The picture shows a termite mound in the northern part of the Kakadu national
park of Australia’s Northern Territory. 6

2.2 Screenshots of a stigmergic construction process. The structure is similar to
the nest structure of the Chartergus wasp. The video footage was generously
provided by Guy Theraulaz. c© Guy Theraulaz, CRCA, CNRS, Universit Paul
Sabatier, Toulouse, France. 7

2.3 The picture shows the entrance of an ant colony’s nest. It is supported by shed
snake skin. 10

2.4 Six kinds of atoms interact. The reaction rule a0 + b0 → a0b0 makes the
corresponding atoms cluster into one molecule seen at time step t1. 15

2.5 The development of an L-system structure: Starting with an axiom x, the rules
x→ F [+x]F [−x]+x and F → FF are repeatedly applied in parallel yielding
four generations of growth. Small degrees of randomness in respect to rule
application, varying angles and lengths generate an organic look. 17

2.6 The figure shows a screenshot of a biomorph implementation by Nardella [85]
which closely resembles the original one [81]. 21

2.7 An illustrative example of the workings of 2D CAs. Illustrations and text are
directly copied from supplementary material [136] for the book “A New Kind
of Science” [134]. 29

2.8 The three basic flocking urges alignment (a), cohesion (b) and separation (c)
are depicted as they would influence (red arrows with two-colored head) the
central agents (blue). Grey agents are out of scope, green ones are within the
neighborhood vicinity and yellow ones are close enough to trigger separation.
The diagrams are adapted from Craig Reynolds’ website [155]. 35

2.9 (a) and (b) show the same choreographic swarm. Due to its tendency to switch
from rings to sinuous lines, Jacob and Kwong named it “Big Ring Snake”. (b)
depicts a typical figure-eight formation [83, 84]. The screenshots were gener-
ously provided by Christian Jacob. 39

2.10 Pilat’s rule-based lattice-swarm has successfully built a construction resem-
bling the nest of the wasp family Agelaia [175]. The screenshots were gener-
ously provided by Marcin Pilat. 41

2.11 Boid-like agents with a simple upwards flight behavior that pile up spherical
particles.The screenshots were generously provided by Christian Jacob. 42

2.12 (a) The construction of an ANN-based swarm that was bred through interactive
evolution [177]. (b) A pre-defined shape (the larger cubes) guided the evolution
of the displayed construction (smaller cubes) of a rule-based swarm [176]. . . . 43

ix

3.1 The boxes show BREVE code fragments that determine an SG system with a
set of reproduction rules and an axiom (left box) and sets of agent attributes
(right box). 46

3.2 Step-by-step illustration of swarm interpretation in 3D space (see text for details). 47
3.3 This qualitative diagram shows an SG agent building cylinders along its route. . 49
3.4 Examples of branching SG structures. 53
3.5 From flocking choreography (a,b,c) to the corresponding SG sculptures (d,e,f). 55
3.6 Examples of SG interaction with a static environment. (a) The SG agents are

blocked from their destination by the wall. (b) Additional bricks are standing
out to further impede the SG agents’ progress. 57

3.7 Example of SG interaction with an oscillating, dynamic object. 58
3.8 An example of interactive SG interactions. (a) An agent of type I , which con-

siders a simple upwards draft. (b) Agent I influenced by 30 agents that fly in a
messy figure eight formation (Table 3.1). 59

3.9 A new design of SG agent behavior. (a) All stimuli, swarm mates and construc-
tion elements, govern the agent behavior.(b) Construction of two elements is
triggered with probability 0.5. (c) On sight of a template, the SG agent executes
reproduction and construction. 61

3.10 (a) An SG system that implements a pulsating size of the built construction
elements. (b) An architectural design by an extended SG system furnished
with several different construction element. 62

3.11 Two art compositions made from basic SG structures. 64
3.12 Diptych of the two pieces (a) “caméléon” and (b) “bighorn sheep”. Acrylic

medium on canvas, 23” x 38”. 65
3.13 Selections of SG structures bred for the diptych displayed in Figure 3.12. They

are arranged similar to their appearance in the paintings. 65
3.14 (a) Swarm grammars growing a pyramidal structure inspired (b) the artwork

’Aftermath’. 66
3.15 (a) Swarm grammars built on the rapid interplay of black outlining agents and

orange stem growth inspired (b) the artwork ’Outlining Blues’. 66

4.1 (a) The concept of standard interactive evolution. (b) The Inspirica [83] user
interface helps to evolve swarm grammars. 68

4.2 Examples of computationally evolved swarm grammar structures. 73
4.3 Screenshots of an exploratory trip into immersive breeding grounds. In (a) the

external breeder is browsing through a population of SG specimen. (b) and (c)
show close-up impressions of SG structures that are under development. (d)
provides an overview of the breeding ground. 74

4.4 (a) Schematic diagram of an immersive evolution approach. (b) A breeder
volume to select and manipulate a subset of SG agents. (c) Previously enclosed
agents remain associated with the breeder volume. 76

4.5 Illustration of interactive manipulation of SG agents by an external breeder. . . 78

x

5.1 (a) Initial simulation state: 5 agents (polygons) are randomly placed in the
vicinity of a template (cube). (b) Emerging structures are compared against
this pre-defined shape consisting of 103 small cubes. 83

5.2 Neighborhood perception rn during the construction process can sometimes be
linked to the emerging structures. (a) A very compact structure emerges with
rn = 0.87. (b) Swarm agents drift away from each other, which yields a low
perception rate rn = 0.08. 86

5.3 Fitness evolution in two experiments implementing different crossover opera-
tors. The upper graphs represent the maximal fitnesses achieved in each gener-
ation, whereas the lower graphs depict the average fitnesses of each generation. 87

5.4 (a) The modules of a generic SG system, SG0, comprisingM0 = n+1 agents,
A0...An, each defined by a configuration module, C0...Cn, and of a set of
behavioral rules, e.g. A0 has m rules R0

0...R
m
0 . (b) The configuration of the

operative agent that wraps rods around the skeletal structure in Figure 5.10. (c)
The spawning rule to delegate construction, employed in Figure 5.10. 88

5.5 An architectural idea model built with equal presence of all three basic con-
struction elements. 90

5.6 Rod-based architectural idea models. 92
5.7 (Cubic) bodies coin the character of these architectural idea models. 94
5.8 These tower architectures are mainly assembled of layer construction elements. 95
5.9 A swirly swarm architecture from different perspectives: (a) front view, (b)

side view, (c) top view. 96
5.10 A swirly swarm architecture from different perspectives: (a) side view (b) front

view, (c) top view. 97
5.11 A swirly swarm architecture from different perspectives: (a) from a 45◦ angle,

(b) side view, (c) top view. 97

6.1 The slim arrows in the upper box show the direction of influence between per-
ception, action and state of a swarm agent i. The S-P tuples stand for the state
and perception modules of other agents that interact with i. 102

6.2 Developments of the average neighborhood perception n̄(t) matches several
phases of agent interactions and flock formations. 104

6.3 In phase I initially stationary agents are drawn together by the urge towards the
world center. 105

6.4 In phase II subgroups align as separate flock formations. 105
6.5 (a) Phase III: agents of single flocks follow each other in a line formation. (b)

Phase IV: agents gather into dense clusters at the heads of the line formations.
(c) and (d) Phase V: a tight cluster has formed that is robust enough against
sporadic attempts of separation. 106

6.6 In the simulation of line formation (ii) of Table 1 agents break out of tightly
formed clusters and take the lead of long line formations. During such events
n̄(t) drops temporarily (e.g. at t = 25 and t = 32). Frequently the line forma-
tions break up (as in Fig. 6.5) and the parting flocks do not interact anymore
(t = 50). As a consequence, n̄(t) reaches a value of zero at about t = 400. . . . 107

xi

6.7 An agent cluster is breaking up into two line formations, one urging upwards,
one towards the floor. 107

6.8 The development of n̄(t) of figure-eight formations (i) and (ii) based on the
parameter sets in Table 6.1. 109

6.9 (a) Agents in figure-eight formation. (b) Tight agent flocks (of six to ten agents)
in figure-eight formation. 109

6.10 A line formation is about to collapse into a figure-eight pattern. 110
6.11 A neighborhood function n̄(t) of a boid configuration, bred by an evolutionary

algorithm, approximates a step function as x̄(t). Afterwards, outside the eval-
uation window the swarm drops into an equilibrium with n̄(t) ∈ [0.35; 0.45].

. 114
6.12 A boid configuration bred by an evolutionary algorithm approximates two pe-

riods of a sinusoidal neighborhood function. As shown, the oscillations sustain
even afterwards. 115

6.13 After about 1200 simulated seconds the oscillating swarm transitions into a
steady state. 116

6.14 The flock extends in two directions. 117
6.15 The previously extended flock from Figure 6.14 contracts again. 118
6.16 A second flock approaches and joins the other one. 118
6.17 Motion blurring renders some of the more complex flight patterns identifiable:

(a) Spherical formation, (b) a U-bent figure-eight, (c) and (d) extended figure-
eights. 119

7.1 (a) Four boids and their respective fields of view. (b) Edges in the graph Gpred

indicate neighbor relations between two boids. 123
7.2 The neighbor predicate ν is substituted by an acceleration performance accelboid.125
7.3 Example rule: If the swarm individual siref sees two neighbors (predicate ν)

si0 and si1, it removes one of them (si0). 126
7.4 (a) Unconditionally, the individual boidref repositions itself. (b) The reference

node updates its state dependent on any neighbor boidi. 128
7.5 (a) Gpred, Gperf and a two-dimensional visualization of a SGG-driven boids

simulation. (b) After several hundred iterations of the SGG main loop (Algo-
rithm 5), the boid agents have clustered. 130

7.6 (a) boidref counts up an internal variable via timer++. (b) When its internal
variable exceeds a certain threshold φ, it creates a new node and initializes it
as a “particle”. 131

7.7 (a) Constructive swarm individuals simultaneously create and initialize new
particle nodes (black squares in the visualization). (b) Several iterations into
the constructive swarm simulation, some swarm individuals perceive particles
in their neighborhoods. 132

7.8 (a) A second timer is maintained through timer(2)
++. (b) The newly introduced

timer triggers proliferation. 133
7.9 (a) timer>φ tiggers the construction of a particle while timer(2)

>φ causes the
agent to proliferate. (b) A branching structure emerges. 134

xii

7.10 A particle is removed on sight. 135
7.11 (a) One of the individuals on the perimeter of Gpred perceives a particle, situ-

ated closer to the center of the graph. (b) The particle has disappeared from the
visualization at the bottom. 135

xiii

Chapter 1

Introduction

In swarms large numbers of simple units interact in ways that make complex patterns emerge.

A swarm is a highly dynamic complex system. It continuously evolves through re-configuration

of the relationships among its constituents. This concept is generally referred to as the swarm

metaphor and it is perceived in numerous modeling examples and on different scales. Instances

are simulations of molecular interactions that result in gene regulatory networks [10], cellular

interactions in the human immune system [11], traffic systems [12], flocks of birds [13] (Figure

1.1), and nest constructions of social insects [14].

(a) (b) (c)

Figure 1.1: (a) A flock of virtual birds, or boids [13], in a loose flight formation. (b) The
model assumes the illustrated geometric fields of perception of the boids. (c) Edges depict the
continuously changing qualitative interaction network among the boids.

The latter example of swarm-built architecture is distinct as the complex interaction patterns

of a swarm materialize in a static outcome1. It is also of great relevance as the goal-driven

manipulation of the environment is an endeavor usually associated with human civilization

[15]. However, the insects’ approach to construction is very different from ours [16] and opens

1We have demonstrated the link between swarm choreography and emerging structures in [1, 5].

1

up new opportunities for architectural methodologies and designs.

The formulation of a generalized swarm-inspired computational model for construction

processes provokes a great challenge: The model might become so expressive, so powerful

that it is difficult to control its emergent processes and produced artifacts. However, through

analysis of the model’s inherent complexity, we are able to harness the creativity of computa-

tional evolution and breed novel swarm-driven sculptures and designs. In the long run, numer-

ous functional aspects should be incorporated into the artificial design breeding processes as to

break away from virtuality and implement the achieved designs in reality.

From another perspective, such artificial constructive swarm models may be helpful for the

systematic study of complex phenomena in general. Swarms bear a high degree of complexity

due to their intrinsic neighborhood dynamics. In addition, in constructive swarms a static arti-

fact emerges from complex interaction processes, and thus provides a measure for complexity.

We have developed swarm grammars (SGs) as an integrated representation of artificial

swarms and developmental models. SGs have evolved in three steps: basic swarm grammars

[1–3], extended swarm grammars [4, 5] and swarm graph grammars (SGGs). In this thesis,

we present each of these types of SGs together with their respective motivations. We dedicate

chapters to the evolutionary exploration of SGs and their application in interdisciplinary works

in the fields of art [6] and architecture [4, 6]. The breeding methods we applied for evolving

architectural design required the introduction of complexity measures in SGs. These in turn

triggered a study on swarm networks [7] that promoted the development of SGGs. Through

SGGs, swarm grammars have matured into a universal, bio-inspired modeling framework for

complex developmental systems.

The remainder of this thesis is structured as follows. The next chapter introduces related

work which is divided into six parts: Nest-building social insects serve as biological inspira-

tion of SGs. Consequently, general aspects of their construction methods and architecture are

provided first (Section 2.1). From a computer science point of view, SGs can be classified as

2

computational developmental model (CDM). Other seminal CDMs are presented in the sec-

ond part of the chapter on related work (Section 2.2). Section 2.3 is dedicated to the creative

potential of CDMs. In this section, we also point out that CDMs and numerical simulations

are becoming an integral part of any design work based on the fact that automatically solved

design tasks can handle well-defined, computable challenges. The designer faces a shift from

hands-on design of a desired artifact toward designing a suitable representation that provides

the means to evolve complex solutions. Again, a computer science perspective sheds light on

this ’evolutionary’ design approach, and several examples are provided (Section 2.4). Although

numeric simulations are themselves designed systems, they can exhibit unforeseen, ’emergent’

behaviors. Section 2.5 addresses this issue by outlining numerous aspects of complexity re-

search, including the categories, the causes and the measures of complex systems. Finally,

Section 2.6 amasses models of artificial swarms which have indeed occurred in all the men-

tioned contexts. They were inspired by biological swarms, utilized for construction of artificial

structures—like CDMs, applied in interactive art installations, subjected to computational evo-

lution and formalized in order to gain insights into complex systems.

Chapter 3 introduces basic and extended SGs and illustrates these concepts with systematic

construction experiments and interdisciplinary art works. Chapter 4 presents different ways to

breed SGs through evolutionary computation: Interactive evolution allows an external breeder

to drive the process solely through manually rating sets of phenotypes. Immersive evolution

enables the breeder to actively engage in evolutionary processes and to tinker with SGs like

a gardener with his plants. If an SG design task is mathematically specified, an automatic

evolutionary process can yield a number of desirable designs and their underlying SG configu-

rations. Chapter 5 details how the latter approach was used to breed architectural idea models

with SGs. While working on architectural design generation, we have sharpened the notion

of interaction complexity in artificial swarms which resulted in an according study presented

in Chapter 6. Eventually, in Chapter 7, we condense previously introduced SG models into

3

a graph-based representation. The resulting SGG model brings about a powerful, clear and

analytically graspable framework for modeling swarm systems. A summary and a chapter on

future work conclude this thesis.

4

Chapter 2

Related work

The work presented in this thesis draws from an interdisciplinary assortment of scientific fields.

Natural processes and products have been inspiring the search for fundamental principles in

complex developmental systems. Various computational models had already been in place to

support the materialization and subsequent evaluation of novel concepts and representations.

Abstractions of physical and chemical theories smoothed the way to phenomenal studies in

the regime of the complex that proved to become an increasingly important aspect of our in-

vestigations. Again, some theories had already been in the works to measure complexity in

computational models.

During repeated cycles of exploration and development, we touched upon artificial life [17],

bio-complexity [18], ethology [16, 19], developmental biology [20], art [21], architecture and

design [22]—academic disciplines whose combinations allowed for productive experimenta-

tion with algorithmically phrased models and their iterative improvements.

It is hardly possible to encompass all the relevant works and reference all the seminal lit-

erature in the respective areas for huge bookshelves could be dedicated to each of them, still

missing out on some important piece or another. Therefore, this chapter guides through (some

of) the related disciplines, hints at certain links and provides many details that proved invalu-

able on our journey of developing swarm grammars as a complex, dynamic, developmental

model.

5

2.1 Social insects, nests and the stigmergic script

Observations of the environment have always had great impact on our (human) ways of life.

Yet, there are still innumerable secrets to unearth and outstanding discoveries to make. Nature’s

creative powers are exemplarily shown1 in Figure 2.1 which depicts a massive termite mound

found in the northern part of the Kakadu national park of Australia’s Northern Territory.

Figure 2.1: The picture shows a termite mound in the northern part of the Kakadu national park
of Australia’s Northern Territory.

Termites and humans alike belong to those 3 to 5% of all animal species that have evolved

as social organizations [23]. Due to the synergy of collectives, this small percentage has been

1The picture was generously provided by Florian Menzel, Biocenter, University of Würzburg, Germany.

6

having a major impact on life on earth. This is, for instance, reflected in the homes of social

earth-dwellers: They enjoy architectures of ingenuity, complexity and (relative) size unsur-

passed by any solitary species.

2.1.1 Collective construction processes

It seems, however, that our methodological approach to architecture deviates drastically. We

diligently engineer plans to reach our goals, whereas social insects seem to follow scripts that

determine simple stimulus-reaction behaviors [24, 25]. On the one hand, the insects are un-

aware of their works’ contribution to the greater good. On the other hand, they naturally con-

struct intricate nests. They construct efficiently, are well coordinated and utilize the massive

power of large numbers of individuals that build in parallel [14, 26]. Honey bees, for instance,

often initiate the construction of three cells all at once. After about half a minute of construc-

tion, they are relieved by co-workers that immediately recognize the state of the construction

and take the required next steps [19]. The community effort of nest construction happens in

several phases. In each phase a certain subshape is built which in turn determines a module for

the next phase (Figure 2.2).

t0 t1 t2

Figure 2.2: Screenshots of a stigmergic construction process. The structure is similar to the
nest structure of the Chartergus wasp. The video footage was generously provided by Guy
Theraulaz. c© Guy Theraulaz, CRCA, CNRS, Universit Paul Sabatier, Toulouse, France.

7

Nest construction could actually be realized solely through manipulation and interpretation

of the built constructions, which is coined sematectonic communication. It is important that the

construction phases are clear and no sematectonic cues overlap [14, 25–27]. This would trig-

ger uncoordinated behaviors in the individuals, leading to incoherent buildings. Additionally,

communication among insects happens through the placement and smell of pheromones. Stig-

mergy refers to the communication through the environment in general and thereby subsumes

sematectonic and pheromone-driven communication. While investigating nest constructions of

termites, Grassé formulated the term stigmergy as follows [28]:

Pour qu’il y ait continuité du travail, il faut un changement de stimulation par la

création de nouveaux stimuli, en l’espèce de nouvelles constructions modifiés par

le travail qu’accomplissent les ouvriers. Cela fait bien comprendre le rôle et la

signification de ce que nous nommons plus loin la stigmergie.

Stigmergy can further be differentiated as (1) qualitative, where a specific pheromone or

construction triggers a behavior, and (2) quantitative, where the intensity of a stimulus corre-

lates with the triggered activities [25].

Stigmergic cues might not be readily available at the beginning of a construction process.

But since the individuals align their constructions with the omni-present magnetic field of the

earth, their work is still well-coordinated. In this fashion, the initial construction efforts can be

easily merged at a later stage [19].

The processes involved in the construction of insect nests are as numerous as they are di-

verse. New construction materials need to be produced, old materials are collected, transported

and recycled, different materials such as wax and propolis (in bees) are offered to the construc-

tion workers that are blended in accordance with the construction tasks at hand (or mandible,

respectively), and former constructions are torn down to make space for new nest’s exten-

sions, etc. [19]. This small selection of procedures underlines that the construction activities

that are investigated by ethologists describe only a small part of an immensely complex, yet

8

well-coordinated interaction process [25, 27]. The investigation of insect constructions offers

the great advantage that the complex interaction processes are accompanied by an emerging

artifact, which serves as another manifestation for scientific investigation [29].

2.1.2 Nest architecture

Insect nests primarily serve reproduction, i.e. protection and breeding, but they also realize

social functions: swarm cohesion, identity and communication [27]. For predator defense

they are equipped with chemical repellents and have evolved construction features such as

envelopes and strategic entrance points [30, 31]. Nests can be built despite the impact of harsh

natural forces, such as wind [32]. They offer shelter against temperature fluctuations through

overlapping and insulating envelopes [27], or through ventilation systems that interconnect

chimneys and chambers of varying exothermic properties [16].

Frisch [19] and Hansell [29] provide comprehensive views on the construction behavior

of various animals including that of social insects. Studying the authors’ broad overviews,

it becomes clear that the nest architectures of social insect colonies are determined by their

construction abilities and building behaviors, the available materials, the situational context of

the nest, and the climate. If not stated otherwise, the information presented in the remainder of

this subsection is distilled from the aforementioned overviews on animal architecture.

The interior structure of ants’ nests is usually made up of a tunnel system connecting cham-

bers that serve various purposes, e.g. a brood chamber, living chambers, refuse depositories.

On the outside, various kinds of construction materials are aggregated. Only few objects, e.g.

twigs and leaves, are pulled and pushed as far as the ants’ hill’s peak which produces the typical

round shape of a nest. Small particles, such as grains of sand and mud, are used to patch the

surface and increase its protective density. The ant hill’s size and shape greatly contribute to the

heating of the nest which has fundamental impact on the insects’ breeding processes [33]. In

an ant hill, workers continuously swap the construction material from the inside out to prevent

9

the formation of mold. A large variety of construction techniques is practiced by ants, espe-

cially since most of the social insect species seem generally open to the utilization of different

available and suitable construction materials. An example of this habit is illustrated in Figure

2.3 where ants of the species Aphaenogaster swammerdami, subfamily Myrmicinae, protect

their nest’s entrance with shed snake skin2.

Figure 2.3: The picture shows the entrance of an ant colony’s nest. It is supported by shed
snake skin.

Weaver ants create their nests by sewing leaves. Having reached a mature state, they are

unable of producing silk. Thus, if the need arises, they rely on their larvae that produce silk

for pupation. A weaver ant uses a larva like a combined tool of a needle and a spinning wheel:

It carries the larva with its mandibles, directs the larva’s mouth and closes the larva’s head to

stitch. Another living construction tool is deployed by leaf-cutter ants. These ants cut leaves to
2The picture and the classification of the species were generously provided by Florian Menzel, Biocenter,

University of Würzburg, Germany.

10

feed fungus which they grow in underground chambers. Well-tended [34], the fungus in return

provides for the (vegetarian) ant societies. In addition, the fungus works as a load-bearing

construction for the subterranean fungus chambers.

Bumble bees, honey bees and social wasps construct one comb for each larva. The sizes

of the combs vary, of course, as do the means to access them for feeding, e.g. through drilling

holes into the cells, opening and closing the waxen cell covers, or simply leaving them open

from one side. Accordingly, the interior designs of the nests vary greatly. There are, for

instance, nests with one centralized tunnel or those with roaming space beneath the nests’ pro-

tective layers. Various links between protective requirements and resulting nest architectures

of wasps are illustrated by Jeanne [30].

The construction performance of bumble bees, with comparably few members of a hive,

is usually ranked below the standards met by honey bees and wasps. The latter two follow

a strict hexagonal comb design. Exact measures are maintained with only minimal devia-

tions due to a precise construction performance and the use of a standardized construction tool

kit which is anchored deeply into the insects’ anatomy. The insects’ anatomies support their

construction through unified dimensions of their limbs, the ability to measure their spatial ori-

entation through the gravitational forces exercised on their heads, and a disposition to execute

pre-scripted movements within accurately predictable time intervals.

Bumble bees are sufficiently learned to cover the surface of earth-bound nests with a layer

of wax to exclude dampness. But they are also smart enough to utilize feathers or hair of roe

deer to build layers of insulation—again, the availability of the construction material plays a

big role in the emerging nest architectures. Bumble bees, just like honey bees, make combs

from wax. Frequently, recycling of this precious resource has been observed: Old nests were

dismantled and flocks of bees transported the old wax to the newly founded colony. More

abundant are the construction materials of potter wasps that blend clay and sand to mortar, or

of wasps that produce a light paper secretion from shaved-off wood particles. Although the

11

cardboard material used by paper wasps is very light, the resulting constructions obtain good

robustness due to longitudinally aligned wood fibers.

Termites are often considered the master-architects among the insect orders. Indeed, they

seem to incorporate most of the key technologies mentioned above. Although they do not

build single-celled combs, some create perfectly regular architectures similar to those of bees

and wasps. Similar to wasps, termites also produce their own construction materials. Some

termites build paper nests as well. But overall, termites are better known as specialists in pro-

ducing and processing secreted mortar. After dropping a pellet they turn around to model and

smooth the material with their mandibles, thus being able to build intricate architectural struc-

tures such as arcs. Similar to the nesting habits of other insects, termites build in trees as well

as beneath and above the ground. But termites are also infamous for the peculiarity to digest

wood, thereby causing great damages to man-built constructions. Their buried nests appear in

great variety. They build compact nests several meters beneath the ground that are connected

to their environments through webs of galleries. Often, however, their underground dwellings

resemble those of ants—with interconnected chambers for tending fungus, food storage, and

reproduction. A queen and king take on the responsibility for the latter activity, usually in-

habiting a specially dedicated chamber at the center of the nest. Above ground, termitaria rise

to impressive heights, as seen in Figure 2.1. Usually, the termites’ nests are only extended

above the ground when their subterranean levels have already gained considerable dimensions.

The termites’ ability to model mortar renders it possible to maintain well-protected mounds for

many decades (the king and queen pass their scepters on to new royalty when they pass away).

Considering the insect nests’ interior climates, several technologies were mentioned: Ex-

cluding dampness through wax layers, the construction of protective layers for insulation, ant

hill formation for sunlight exposure, and drying cycles of damp construction materials. Addi-

tional individual behaviors contribute to thermal regulations. Wasps, for example, create heat

through quick contraction and stretches of their abdomens and they cool off the nest through

12

transporting water into the nest. Ants on the other hand, increase the temperature through ex-

tended sunbathing and subsequent descent into their nests. Yet, there is another phenomenon

of climate regulation which is observed in various ant [35, 36] and termite nests [37]. The

architectural designs are adapted to the corresponding local climates, a trade-off is found be-

tween air ventilation and heat dissipation. The key technologies offered by the environment

and followed by the insect builders are the respective dominant factors of wind and sun. The

exact mechanisms still need closer investigations but it is assumed that both thermal radiation

as well as wind-induced flow drive the ventilation of insect nests.

2.2 From developmental models to complex systems

The developmental processes that result in organic and architectural structures are extraordi-

narily complex and of great scientific interest. It is therefore not surprising that computer

scientists have been eagerly creating algorithmic models to retrace these phenomena. Devel-

opmental processes might find their manifestations in temporary state configurations of com-

plex, volatile systems, or might, even more abstractly, traverse states in a theoretical model

that seeks empirical confirmation. Computational developmental models (CDMs), however,

usually focus on the manifestation of structural artifacts in virtual spaces [38]. In particular,

CDMs can be seen as algorithmic systems in which a considerably small database is amplified

in an iterative process of growth or unfolding3.

2.2.1 Cellular automata

In cellular automata (CA) the processing units (cells) are organized in a lattice structure and are

set to an initial state that is changed in accordance with a set of rules that consider the states of

all neighboring cells. Von Neumann developed CAs to model phenomena of self-reproduction

3The expression “database amplification” is used in literature in the context of computer graphics applications
of generative and developmental systems. It underlines the relationship between a small amount of provided
information and the possibly large amounts of automatically derived data [31, 39].

13

based on the interplay among a large number of finite state machines [40, 41]. With a success-

ful implementation that immensely simplified von Neumann’s first modeling attempt, Codd

provided a first completely self-reproducing artificial machine [42]. Later, Langton discovered

that there is no requirement for a self-reproducing automaton working as a universal computer.

He provided an according CA-based system which became known as Langton’s Loops [43].

Eventually, Conway drastically reduced the complexity of self-reproducing CAs once again.

Considering only three rules, self-reproducing, propagating and intriguingly interacting pat-

terns emerge on a two-dimensional CA lattice and rules that take eight neighboring cells into

account (Moore neighborhood):

1. Each cell with one or no neighbors dies,

2. each cell with four or more neighbors dies,

3. each cell with three neighbors becomes populated.

In fact, in 1998, Reggia et al. showed that self-replicating loops automatically evolve on differ-

ent scales in a CA that copes with eight different cell states and which is seeded with an initial

random allocation of one fourth of all cells [44].

2.2.2 Artificial chemistries

In Miller’s famous ”primordial soup” experiment in 1953, he artificially synthesized simple

proteins, providing fundamental insights into some of the mechanisms contributing to the ori-

gin of life [45]. The analogous idea—to have a selection of molecules react in silico—is

realized by so-called artificial chemistries (ACs). An AC usually comprises a set of molecules

S, a set of reaction rules R and an interpretation system, or algorithm A to drive the simulation

of chemical reactions [46]. Based on a reaction rule, two (or more) molecules, represented as

strings of symbols, would interact and possibly create a new molecule, be reconfigured or be

14

merged. Figure 2.4 shows an artificial chemistry system in action [47]. Six different particles,

a0 to f0 are contained in a two-dimensional space, wandering randomly.

t0 t1

Figure 2.4: Six kinds of atoms interact. The reaction rule a0 + b0 → a0b0 makes the corre-
sponding atoms cluster into one molecule seen at time step t1.

Dozens of implementations of ACs have been proposed and utilized for different kinds of

experiments. A detailed overview is presented in [48]. Mostly, the interactions of the molecules

would be executed in a random order. However, there are ACs that consider topologies on

the molecules which in turn determine the succession of reactions (e.g. the chemical casting

model). There are stochastic ACs providing several reaction rules for the same pairs of inter-

acting molecules. In artificial molecular machines and abstract automata the (active) reaction

rules directly share the reaction space with the (passive) molecules. The concept of ACs was

further adjusted to their computer hosts with molecules that bundle assembly code and reac-

tions that realize the molecules’ interpretation (assembler automata).

ACs found applications mainly in three areas:

1. In modeling of biological, chemical, evolutionary, self-assembly, social and ecological

15

systems.

2. In information processing to compute the outcome of (real) chemical experiments.

3. In optimization for combinatorial tasks—especially the computing processes of non-

topological ACs can easily be distributed to multiple computers and be executed in par-

allel.

2.2.3 L-systems

Like in psychological developmental processes, there are many biologically researched phe-

nomena that also require a more abstract, high-level description. Aristid Lindenmayer and

Przemyslaw Prusinkiewicz, for instance, developed L-systems as a CDM for the growth of bio-

logical organisms, especially of plants [49,50]. Hereby, formal systems are utilized to generate

the developmental stages of simple organisms in so-called cellular arrays that are represented as

strings. Repeated application of grammatical production rules generates a cellular array which

can then be interpreted graphically. One important difference to traditional formal languages

is the parallel application of production rules.

While certain symbols of the resulting string represent cells, other auxiliary symbols, like

brackets, determine the recursive branching properties of the structure. The turtle interpre-

tation serves as a metaphor for the graphical transposition of a generated string: A “turtle”

is drawing a line while moving according to the string symbols’ meanings like F for “for-

ward”, − for “turn left”, + for “turn right”, [for “remember position” and] for “resume last

position”. Figure 2.5 depicts the development of an L-system drawn by means of the turtle

interpretation [51].

Lindenmayer and Prusinkiewicz investigated the relation of the expressiveness of L-systems

and their classification in accordance with the Chomsky hierarchy of formal languages. Context-

free 0L-systems suffice for modeling the development of systems without intercellular commu-

16

gen. 0 gen. 1 gen. 2 gen. 3

Figure 2.5: The development of an L-system structure: Starting with an axiom x, the rules
x→ F [+x]F [−x]+x and F → FF are repeatedly applied in parallel yielding four generations
of growth. Small degrees of randomness in respect to rule application, varying angles and
lengths generate an organic look.

nication. Otherwise, one- or two-sided input systems are necessary (1L- and 2L-systems).

There are many extensions to the original L-system idea. For example, parameterized L-

systems allow for the assignment of a numeric vector to each symbol. In the course of an

organismal development these numeric values can capture and effect continuous changes. Pa-

rameterized L-systems also allow for more complex production rules that consider mathemat-

ical constraints on the carried numerical values. Other variations of L-system include propa-

gating L-systems that do not contain erasing rules, or deterministic L-systems in which only

one rule is applicable in any given case4. Neighborhood dependent cell division can be sim-

ulated with map L-systems [53]. In map L-systems markers are first written into the cellular

array string. Subsequently, these markers indicate a compartmentalization of the developing

structure through the insertion of edges.

4The solution to the inference problem, that is to create an adequate L-system for a given structure, is discussed
and depicted in Jacob’s book ”Illustrating Evolutionary Computation with Mathematica” [52].

17

2.2.4 Universal CDMs

Giavitto et al. summarize several approaches to CDMs [54]. Firstly, there are dynamical

systems with sets of state variables that determine their global states. Secondly, there are struc-

tured dynamical systems which are dynamic systems that can be divided into subsystems. Fi-

nally, there are dynamical systems with dynamical structures, abbreviated to (DS)2-systems,

for instance a “developing multi-cellular organism” [55]. In addition, Giavitto et al. describe

developmental models as tuples comprising both a topology and a formalism. For instance

multi-sets in tandem with multi-set rewriting, sequences (like symbolic strings) and the concept

of L-systems, uniform topologies that are processed in group-based data fields (GBF)5 [56], or

combinatorial topologies and map L-systems that are mentioned above.

There are, however, also formalisms that explicitly integrate the topology of the systems,

such as graph-grammars, multiscale tree graphs (MTGs)6 and the modèle géneral de simulation

(MGS) which represents changes of topological collections of units by transformation paths

on a symbolic notation [57].

Kniemeyer et al. have developed relational growth grammars (RGGs) which promise, like

MGS, to be a universally applicable representation of CDMs [58]. They use RGGs as exten-

sions of parametric L-systems with object-oriented, rule-based, procedural features. In fact,

modeling CDMs by graph grammars, like in RGGs, allows for the expression of all develop-

mental data structures we know about: multisets, strings, axial trees, and relational structures

(edge-labeled directed graphs). RGGs can therefore be seen as a universal modeling language,

being able to simulate standard L-systems, artificial chemistries, CAs and ecological systems

alike. Kniemeyer et al. successfully applied the RGG model to grow multi-scale models of

plants integrating their structure and function [59], and just recently to grow architectural mod-

els [60]. They also suggested that RGGs could support agent-based modeling (see Section

5GBF define a homogeneous, fixed topology on sets of units.
6Parallel, modular growth on different scales can cause severe complications in MTGs.

18

2.5.2)—by interpreting nodes as agents, edges as inter-agent relations, and by driving their

interactions through sub-graph substitutions [61].

Almost 20 years before Kniemeyer presented RGGs, Culik et al. had extended L-systems

with the means to describe plants through graph structures and their growth through graph

grammatical substitutions, which were further on referred to as graph L-systems [62]. Shortly

afterward, Nagl investigated the relationship between graph grammars and graph L-systems,

concluding that graph grammars can be reduced to graph L-systems and vice versa [63]: identi-

cal graphs can be achieved by either sequential graph grammar productions or by parallel sub-

graph substitutions as realized in graph L-systems. About another decade later, Lindenmayer

argued that relying on maps instead of graphs bears many advantages, e.g. a clear method for

mapping between the representation and the growing structures and better performance due to

the avoidance of transformations of the representations [64].

2.3 From developmental models to creative design

Shortly after Chomsky presented formal grammars as a system for the generation of syn-

tax [65], CDMs started thriving in the arts and design. Soon CDMs were utilized to model

the generative composition of texts and patterns and their decompositional analysis, respec-

tively [66]. CDMs were, for instance, applied to generate patterns of cattle brands [67] and

to retrace two-dimensional blueprints of Palladian Villas [68]. Just recently, the computa-

tional generation of Palladian Villa architecture transcended virtuality by the means of three-

dimensional rapid-prototype printers [69]. Until today, novel ways to produce architectural

blueprints through generative grammars are being explored. A very recent example is pro-

vided by the interactive generative architectural modeling tool called ArchiDNA [70]. Here,

the two-dimensional symbolic shapes of nucleic acids are used as geometric building blocks to

compose (two-dimensional) blueprints as instigated by the architect Peter Eisemann. Similarly

19

to these architectural blueprints, CDMs were also used to retrace the composition of art pieces,

for instance in regard to Richard Diebenkorn’s Ocean Park paintings [71].

2.3.1 Evolving art & design

Often, the immediate goals of applying CDMs in design and art have exhibited a reproductive

character and fostered only small deviations from an original design work or work of art. An-

other approach to harness the potential of computer-generated creativity is based on the creative

power of computational evolution [72–76]. Based on L-Systems, and other mathematical, frac-

tal methods intriguing sculptures of artificial aesthetics can be evolved as well [77,78]. Whole

worlds of seemingly living organisms grow in virtual spaces [75, 79, 80].

In 1987, Dawkins showed how vast varieties of biomorphs, recurrent, symmetric, branch-

ing line structures that resemble organic organisms (Figure 2.6) could be bred interactively by

means of random mutations and selection through an external breeder [81]. Similarly, Sims

applied evolutionary computation to breed three-dimensional plant structures and images [82].

Todd and Latham provided another intriguing perspective on evolutionary art, focusing on

elaborate sculptural works [73]. Jacob developed Evolvica, a framework for evolutionary ex-

periments written in Mathematica [52]. Later, Kwong and Jacob complemented Evolvica with

Inspirica, a user-interface that allows to interactively breed structures and interaction processes.

By means of Inspirica, they interactively bred pattern formations in simulated flocks [13] and

three-dimensional structures [83, 84].

The interplay of computationally and user-created graphical content can be extended to

interactive, real-time art installations [86]. Until today, innumerable artistic designs were bred

[87,88] and evolutionary art installations set up, e.g. [80]. Interesting chapters on evolutionary

computing and art and design are provided in [72] and [74]. In the latter reference, for instance,

one chapter is dedicated to Hemberg et al.’s Genr8 system, a sophisticated design tool for

architects [89, 90]. Genr8 bundles the technologies of surface generation by L-systems and

20

Figure 2.6: The figure shows a screenshot of a biomorph implementation by Nardella [85]
which closely resembles the original one [81].

evolutionary algorithms and makes them accessible in a user-friendly Maya7 plugin.

The combination of CDMs, evolutionary computation and user feedback provides a com-

prehensive toolset for artists and designers. In this context, King differentiates between arbi-

trary and algorithmic synthesis of artistic content. These terms are coined through the corre-

sponding processes during which either an artist determines the object composition arbitrarily

or an algorithm automatically performs the task [77]. But even when automatically evaluat-

ing CDM-driven computer art, human-made works frequently provide the statistical basis for

judgements [93, 94].

7Maya is a popular 3D modeling environment for artists, designers and architects [91, 92].

21

2.3.2 Integrating organic and functional design

Seemingly opposed to the problem of artistic creativity, the original motivations for some

evolutionary computation methodologies were industrial design problems. Rechenberg and

Schwefel, for instance, were experimenting with chance-driven optimization of a nozzle’s

shape to increase its thrust before formalizing the respective elaborate algorithmic optimization

framework of evolution strategies [95]. The generative character of evolutionary algorithms is

especially evident when looking at Koza’s method of genetic programming in which programs

are evolved by growing, crossbreeding and refining trees of code [96]. His systems exhib-

ited unquestionable creativity when, for instance, generating novel designs of high-performing

electric circuits [97].

It cannot be argued that some artistic works seek truth beyond the quantifiable and, there-

fore, one may have the opinion that aesthetics cannot, or should not, be subjected to any kind

of optimization method—as which evolutionary algorithms are frequently referred to. At the

same time, however, it can neither be argued that with the advancement of tools and technology

our design methodologies change. Just as drawing has become part of architectural practice

during the Renaissance [98], computer-aided design has within the last decades as well. In

fact, when provided with basic procedural and structural building blocks (a CDM), an algorith-

mic system (for instance evolutionary algorithms) by itself can generate solutions to predefined

problems, or at least optimize design in respect to imposed constraints, e.g. certain required

functionalities.

Instead of the obsolescence of theory in design and architecture due to the autonomy

of generative machines, Frichot [99] suggests to embrace the opportunities of design intelli-

gence [100] that are offered by the new rising paradigm which is also refered to as projective

architecture [101]. After all, the 3D constructions produced, for instance by Genr8 [90], serve

as digital idea models for architectural designs similar to those that are traditionally manually

shaped from wood [102].

22

By mimicking natural construction processes in a CDM, complex, nature-inspired de-

sign elements can be adopted [103, 104]. Indeed, nature-inspired design has become a well-

established part of architecture since the 1990s [22]. According to Pearson, predominance of

rectangular, cubic elements, the emphasis of the “straight line” is a relic of the industrial rev-

olution and not desirable [105]. Instead, he claims that an organic style with “free-flowing

curves” should be favored which is supported by novel construction processes and materials.

Although the automatic generation of architectural design bears the potential to consider at-

tributes beyond organic looks and sound statics, form prevailed over function and true complex

pretensions in most of the examples documented in [22].

A rather big challenge for automatic design generation might be the requirement of ar-

chitecture to be integrated into the environment [103]. There are, however, factors such as

waste water disposal, energy efficiency and other aspects of ecological and economic perfor-

mance [106] that are quantifiable [107] and, thus, could be immediately addressed in automatic

design generation processes.

2.4 Evo-devo: development on multiple scales

In analogy to the fact that genes cannot be read as linear code instructions [108], Jacob pointed

out that “the art of genetic programming” encompasses both a complex developmental pro-

cess arising through a CDM and an evolutionary algorithm that produces and hones the CDM

configuration [109]. Above, we refer to systems that fulfill these criteria, thus being able to

create novel designs, e.g. Genr8 [89, 90]. When models consider both the long-term impact

of evolution as well as the short-term process of development, they are referred to as evo-

devo models [20, 38, 110]. Some CDMs have specifically been developed to work well with

evolutionary algorithms resulting in genuine computational evo-devo models, whereas other

CDMs were designed independently just to be subsequently optimized for their use with com-

23

putational breeding techniques. In this section, a coarse perspective on evo-devo models is

provided.

2.4.1 The evolution of evolution

Miller’s famous experiment on the synthesis on protein molecules is mentioned above to intro-

duce the idea of artificial chemistries. However, it also lends itself to the fact that evolutionary

processes have been happening in which atomic and molecular interactions self-organize to

form increasingly complex systems. Kauffman calls this phenomenon “self-organization for

free” [111], whereas others refer to it as chemical evolution. Developmental processes and

evolutionary processes are tightly interwoven: Molecules and sets of molecules interact, grow,

change, adjust, reproduce, exchange parts—they evolve. Evolutionary pressure is exercised

as some of those molecules persist over time and others do not. Sooner or later, those that

have successfully occupied an ecological niche, or those that have reproduced very effectively,

appear in growing numbers and with various alterations. Again, some persist and others do

not—the evolutionary engine is running. Margulis and Sagan claim that real leaps in the evolu-

tion of life happen when independently evolved organisms form new synergetic bonds [112]. A

famous example is the eukaryotic cell that contains one or several mitochondira whose genetic

information is not only separately stored but also strongly resembles those of bacteria.

Taking these insights one step further, Griffiths and Gray argue that “developmental pro-

cesses, rather than genes or traditional phenotypes, to be the units of evolution”, whereas “[...]

the prime unit of evolution (unit of self-replication) is the developmental process, or life cy-

cle.” [110]. So they claim that the observations in chemical evolution result from the same

principles as those seen in biological evolution. Of course, many other evolutionary perspec-

tives support this idea, for instance the evolution of ideas themselves [113], the evolution of

the corresponding cultures [114], and the evolution of language [115].

In systems of evolutionary computation the relation to developmental models is especially

24

evident through the separation of genotype information and the computation of the correlated

phenotype [52,97]. Therein, firstly, genetic operators, e.g. selection, mutation and recombina-

tion, are applied on the level of (abstract) data structures, and secondly, this genotypical infor-

mation drives developmental processes to realize the phenotype—anything but a 1:1-mapping

between genotype and phenotype can be interpreted as a CDM. In the following paragraphs

several examples of such computational evo-devo models are presented.

2.4.2 Gene regulation and embryonic systems

Kumar and Bentley named their integrated evo-devo approach evolutionary developmental sys-

tem (EDS) [38]. In particular, it is an object-oriented system that incorporates proteins, genes

and cells and promotes the development of genetic regulatory networks for an embryonic de-

velopment. Cells are stored hierarchically, in an n-ary data structure. The root represents

the zygote, whereas progeny cells are attached as subtrees. Proteins reside in their accord-

ing host cells. Through hierarchical traversal of the described data structure, signal pathways

between cells direct the cellular developments. The graphical and spatial representation is re-

alized through the creation and interpretation of Virtual Reality Modeling Language (VRML)

expressions. The superimposed evolutionary algorithm is responsible for the configuration

of the biological model and promotes (1) inner-cellular gene regulatory networks and (2) the

development of pre-defined embryonic shapes.

Despite the preliminary success of the outlined model, alternative embryonic evo-devo

models put an emphasis on other, inter-cellular mechanisms of interaction. In [116] asym-

metry is established to greatly influence the initial and subsequent developmental patterns of

embryonic processes. It comes about in two fashions. (1) Developmental signals are localized

in the egg, determining the fate of cells in different partitions. This kind of asymmetric cell

differentiation is, for instance, accounted for in the developmental processes in the fruit fly,

Drosophila melanogaster, and the roundworm Caenorhabditis elegans. (2) In the soil-living

25

amoeba Dictyostelium discoideum, on the other hand, solely the local environment seems to

determine the differentiation of a cell. This determination of a cell’s fate also drives its migra-

tion to the correct position in the embryo.

2.4.3 Artificial neural nets and morphologies

Apart from artificial neural networks (ANNs) as computational means to analytically or stochas-

tically abstract sets of training data [117,118], there are computational models that actually try

to capture the growth of neural nets and to retrace the behavior of the physiological nervous

system. In [119] Astor and Adami present an autonomous, agent-based approach to neural

growth and interaction. Local substrates that are modeled by artificial chemistries and internal

genetic information determine the cells’ activities. Manually coded genetic information drive

the emerging gene regulation networks that allow for the emergence of deterministic struc-

tural development, self-limiting cell growth, regenerating structures, directed growth, logical

computation, and system adjustments similar to traditional ANN learning. The authors believe

that these functionalities could support more complex behaviors of the system, but they point

out that the computational effort to evolve such behaviors is immense and would require the

computing power of a massively distributed system.

In analogy to the understanding of the control of our physical activities induced by our ner-

vous system, artificial neural nets have been evolved in tandem with the body plans of artificial

creatures [120]. A comprehensive overview, a standardized description and implementation

is provided by Pilat [121]. The goal of successful body control is frequently measured as the

distance that is overcome by an evolved creature in a physically simulated environment. Del-

laert and Beer, for instance, presented an according model of developmental evolution [122].

They see certain benefits in the developmental aspect of their model, especially (1) robustness

to genetic changes (filtering effects of small mutations), (2) broad possible impact of a single

mutation—depending on its influence during the developmental process, and (3) compact en-

26

coding for complex phenotypes: incremental enhancement, supporting symmetry and modular

design. Despite of their rather abstract modeling approach, they conclude that “Development

is an important, powerful and integral element of biological evolution.”. Hornby put special

emphasis on advantageous properties of the genotype representation in such morphological

experiments [123]. He concluded that a generative representation allows for “the encapsula-

tion, coordination, and reuse of assemblies of parts”. He also pointed out that basic features

of a universal computing system are captured by the generative representation: control flow,

combination and abstraction.

2.4.4 The spatiality of evo-devo models

All the mentioned examples of evo-devo models embrace physical aspects of simulation. This

is not surprising as the developmentally grown structures’ success, or fitness, is measured

against some physical constraints. The fundamental challenge in this context is the prediction

of function associated with form and vice versa—on a molecular [124], a cellular [125] and an

organismal level [121].

And indeed, basic principles are being unearthed that consistently appear on all these levels

of organization. Transegrity, for instance, refers to the fact that numerous natural structures,

e.g. neural cells or the human body, are not simply obeying all penetrating forces like gravity,

but they are able to withstand, to keep and even to self-organize their form (and thus their

functionality). Transegrity, Ingber explains, emerges through a structural web of flexible and

solid construction elements [126]. Paul et al. have successfully applied evo-devo models to

finding transegrity structures [127].

Mechanistic interactions on a molecular level are nonessential for the simulation of transeg-

rity of the human musculature. Instead, abstract descriptions of the workings of muscles and

bones, their mechanistic and material characteristics suffice to achieve adequate numerical re-

sults [128]. Nevertheless, it is also deemed necessary to follow eager concepts of precise and

27

detailed simulations as some important phenomena might only emerge on the level of elemen-

tary interactions.

Smith devised a vertex-vertex language to directly manipulate vertices in triangular mesh

data [129]. Triangle meshes have advanced to an established, inherently spatial data repre-

sentation in current computers. By creating a language to transform these data structures in

accordance with physical and bio-chemical theories, a direct mapping between vertices and

the units of a model (e.g. molecules) can be easily implemented. This can greatly facilitate the

implementation of complex biological simulations that are based on extensive computations in

three-dimensional space [130].

Even a theory that could potentially explain the emergence of all physical phenomena,

a so-called Theory of Everything (TOE) [131], could not lead to an all-encompassing com-

puter simulation—after all, the universe consumes all its resources to constantly compute it-

self [132]8. Which leaves but one possibility: to find and improve suitable approximations of

certain aspects of reality (abstractions) and to diligently consider the resulting insights for gov-

erning our lives. In the next section, some insights are described that seem of great importance

to successfully cope with the complexity of life.

2.5 Complexity

Although complexity is attributed to a broad variety of systems and phenomena, it lacks a clear

definition. In order to narrow it down, this section provides answers to the following three

questions. (1) Under which circumstances do we attribute complexity? (2) What is its cause?

(3) How can complexity be quantified?

8This is but one argument that renders innumerable other arguments for the impossibility of a Laplace’s demon
unnecessary.

28

2.5.1 Categories of complexity: identifying complex phenomena

Not only was von Neumann’s goal of creating self-reproducing systems finally achieved [133],

but cellular automata also became a general model for complex systems based on neighborhood-

dependent state changes [134]. Systematic investigations of the global state changes of one-

dimensional CAs led Wolfram to a general classification scheme of the complexity of patterns

emerging in CAs [135].

Wolfram’s efforts were supported by an important advantage of one-dimensional over other

n-dimensional CAs: The development of a CA over several iterations can be illustrated at a

stretch (Figure 2.7). Wolfram described the discovered qualitative categories of CA complexity

as follows:

1. Spatially homogeneous state

2. Sequence of simple stable or periodic structures

3. Chaotic aperiodic behavior

4. Complicated localized structures, some of them propagatingCellular Automata and the Mechanisms of Nature
Based on Chapter 2: The Crucial Experiment, from A New Kind of Science by Stephen Wolfram

Cellular automata are examples of simple programs,
that work by having the color of each cell in successive
rows be determined by the same simple rule.

With the rule above, a
simple pattern is produced.

Some rules, like the one on the right, produce
intricate yet ultimately regular patterns.

One of Wolfram’s key discoveries is the surprising fact
that certain simple rules like the one on the right can
produce patterns and behavior of immense complexity.

A New Kind of Science shows how this mechanism is at
the heart of all sorts of fundamental phenomena in nature
and elsewhere—forcing a rethinking of the foundations
of many sciences.

If a cell and its neighbors look like this at one step

then the cell will look like this on the next row

Go to www.wolframscience.com/media for downloadable versions of these and other images.

An example of Wolfram's results is that the complex pattern
on this mollusc shell may just come from a simple program
like a cellular automaton.

(rule 90)

(rule 30)

(rule 254)

25 steps

250 steps

step 3step 1 step 2 step 4 step 5

Figure 2.7: An illustrative example of the workings of 2D CAs. Illustrations and text are
directly copied from supplementary material [136] for the book “A New Kind of Science”
[134].

As opposed to the fixed spatial cell arrangements in CAs, Random Boolean Networks

(RBNs) abstract from the notion of space [111]. In RBNs each cell can be connected to any

29

other one, forming an information propagating network. As in CAs, the configuration of all

cells defines the global system state. With a novel representation, a new terminology was intro-

duced: If a specific global state of an RBN is reached starting from a set of independent initial

states, it is called an attractor state. Graphically, the transition paths of state transformations

that converge to an attractor state can be depicted as streams of a basin of attraction. It might

also happen that an RBN does not reach a specific system state: Instead, the system might

reach a fixed or steady state, or it might infinitely loop through a subset of states, be trapped in

a so-called limit cycle.

A slightly different perspective on global system states was brought about by investigations

of pattern formation in artificial chemistries. Autocatalytic metabolisms were first discovered

by Bagley and Farmer [137]: An autocatalytic set of molecules is formed through catalytic

reactions and sustains itself. As another example, hypercycles were established in an abstract

automata configuration where machines and tapes share the (virtual) reaction space. Schus-

ter and Eigen identified hypercycles as “networks of ’functionally completed, self-replicating

entities’” [138].

From a more general point of view, Banzhaf suggested a classification scheme for CDMs

that are usually associated with complex pattern formations or complex behaviors [46]. In par-

ticular, he differentiates between three kinds of systems: (1) self-assembly, (2) self-formation

and (3) self-organization systems. In self-assembly systems patterns emerge through repeated

application of an invariant mechanism. A self-formation system traverses through a sequence

of system states, at each step enabling novel means to react to the environment. Self-organization

systems reach a stable, self-maintaining state without the necessity of a specific initial config-

uration nor a fixed succession of events. Banzhaf also pointed out that a developmental model

should be coined constructive, if the emerging structures grow according to a provided com-

plexity measure, as introduced in the remainder of this section.

30

2.5.2 The cause of complex behaviors

Generalizing models of complexity usually involve interactions of multiple units or agents9

[139]. This observation automatically raises the questions of when, i.e. under which circum-

stances, and how, i.e. yielding which consequences, these interactions take place. The first

question is usually addressed by considering a topology or structure on the interacting agents.

The second issue is often subsumed by defining the agents’ behaviors.

Regarding the topology of complex interaction networks, it has been speculated that the

degrees of protein-protein interactions which regulate the gene expression in fruit flies fol-

low a power-law distribution [140]. Even though different complex networks have different

mathematical properties [141], it is insightful to study the networks of interacting units in de-

velopmental systems. From a power-law degree distribution of interactions in a system one

could, for example, derive that it is robust to random noise [142]. Power-law degree distribu-

tion is also an indicator for the small-world property of the investigated network [143–146].

This property attributes a small mean path length between any pair of nodes and a relatively

high cluster coefficient, resulting in highly connected subgraphs.

Albert et al. conducted experiments to create and analyze random RBNs with the same

distributions of degrees of connectivity as those shown in gene regulatory networks [147] and

in other scale-free networks [142]. It has been demonstrated that such RBN models show state

transition patterns very similar to those of natural networks [148].

The behaviors of the involved agents is closely interwoven with the emerging topology

of interactions: The agents need the possibility to interact which is provided by their senses.

In CAs, cells know the states of their immediate neighboring cells, in RBNs a unit ’sees’ an

arbitrarily defined set of other units, in ACs collisions trigger the application of a reaction

rule. Obviously, the interaction network in a complex system strongly depends on the sensory

9Depending on the field of science one is most involved with, agents might also be referred to as cells, units,
objects, agencies, molecules, particles, etc.

31

capabilities of the involved agents.

Having decided to react upon some sensory information, an agent takes an action, it trig-

gers an actuator. This action in turn can influence its own state or the states of its neighbors.

Denzinger provides the following broad defnition of an agent [149]. An agent is defined as

the quadruple Ag = (Sit, Act,Dat, fAg). Ag can find itself in any of the situations expressed

in Sit. It can perform the actions described by the set Act. Its internal data areas, i.e. local

variables or memory cells, are determined by the set of possible values Dat. Based on the

perceived situation and its internal data values, the agent determines the next action through a

decision function fAg : Sit×Dat→ Act.

Numerous investigations of natural complex systems support the assumption that these sys-

tems are caused by the interplay of large numbers of agents. However, it is a great challenge

to artificially design complex systems. It is hard to engineer features that render systems ro-

bust, self-organized, sustainable or highly adaptive, because these and other global traits of a

complex system are often considered emergent [150, 151], i.e. they cannot be foretold by the

designs of the individual agent behaviors. Instead, the interaction dynamics will bring them

about. Therefore, it is of great interest to identify phenomena in complex systems that link lo-

cal agent behaviors with global emergent occurrences. The search for such links has unearthed

various measures to describe complexity.

2.5.3 Measures of complexity: quantifying different complex phenomena

Schuster summarized different approaches to measuring complexity. Complexity can be ex-

pressed in the ecological diversity of a system, in the complexity of construction in respect

to its functionality, as the internal complexity of a system referring to its logical depth, or

in a system’s hierarchical organization [138]. Schuster himself reduced complex design to

the processes that give rise to the artifacts and stated that: “nature uses optimization to deal

with scarcity, she takes advantage of abundance to create innovation, and her recipe to master

32

unpredictability is tinkering and modular design.”.

Hornby supports the idea of modularity in order to create complex designs. He showed,

for instance, that through the reuse of assembly modules, a single parametric, generative rep-

resentation can host a wealth of similar designs which he calls families of designs [152]. He

furthermore defined a complexity measure considering the reuse, modularity and hierarchy

(RMH-measure) as provided by the genotype, or the code implementing a CDM [153]. Hornby

pointed out, however, that this measure has to be normalized by the design size of the pheno-

type or the algorithmic information content of the genotype in order to be scalable for varying

design tasks.

2.6 Completing the cycle: complex and constructive swarms

The development of swarm-inspired construction algorithms was motivated by the simulation

of collaborative stigmergic building processes, i.e. the intricate nest constructions of social

insects. At the same time, these algorithmic models qualify as CDMs that integrate large num-

bers of locally interacting builder agents. From these, non-linear complex interaction dynamics

emerge that manifest in architectural artifacts. Thus, complexity measures can be applied to

investigate the link between local behavioral programs, the emerging interaction processes and

the corresponding artifacts.

As the last section of this chapter, it ties these facts loosely together and prepares the stage

for the contribution of this thesis, namely the design of a complex, dynamic, developmental

swarm model. It introduces boids, a seminal model of artificial swarms, investigations about

its complexity, experiments with boids in the context of computational evolution, and models

of constructive swarms.

33

2.6.1 Natural swarms are complex systems

In Section 2.1, the nest-building approaches of social insects were outlined. It is easy to in-

terpret insect colonies as multi-agent systems (MAS) encompassing large numbers of individ-

uals [154]. As function follows form, insect individuals differentiate into workers, warriors

or potential successors to the crown [19]. Stigmergic signals trigger highly evolved behaviors

that yield well-coordinated, thus effective, and efficient collaborations. Those behaviors are

scripted and, even though they address vast assortments of situations, they can be decoded

when investigating certain subtasks, such as foraging or nest-construction [25,27]. In the latter

example of collaborative productivity, built artifacts foster the investigation of the outcome and

the preceding complex networks of interaction [141]. Thereby, local individual behaviors can

be connected to global emergent phenomena. In brief, social insect colonies provide an inspi-

rational model that encompasses a multitude of aspects of complex systems. However, for a

step-wise investigation into swarm complexity, models of flocking swarms, e.g. flocks of birds

or schools of fish, have gained great attention.

2.6.2 Flocking models

The swarm metaphor stands for large numbers of individuals that follow simple scripted be-

haviors but achieve globally emerging phenomena, as in schools of fish or flocks of birds. In

1987 Reynolds presented a simulation concept that mirrors the flocking dynamics of birds [13].

In his model, a simulated virtual bird, also called boid, is represented as a pyramidal graphical

object oriented towards its velocity. In order to be able to react to its neighbors, a boid pos-

sesses a conic field of perception that is determined by a viewing distance d and an angle α.

Rather loosely, Reynolds explained which urges for acceleration are triggered by the flocking

mates perceived in a neighborhood. Figure 2.8 illustrates the according urges schematically.

Alignment adjusts the direction to the neighbors (Figure 2.8(a)), cohesion draws the indi-

vidual towards its neighbors (Figure 2.8(b)), and an urge for separation prevents the boids from

34

Figure 2.8: The three basic flocking urges alignment (a), cohesion (b) and separation (c) are
depicted as they would influence (red arrows with two-colored head) the central agents (blue).
Grey agents are out of scope, green ones are within the neighborhood vicinity and yellow
ones are close enough to trigger separation. The diagrams are adapted from Craig Reynolds’
website [155].

bumping into each other (Figure 2.8(c)). Some model implementations explicitly state that the

separation urge acts only upon those neighbors that come closer than an individual’s minimal

distance dmin. In combination with some randomness, these rudimentary urges let large crowds

of agents flock smoothly in virtual 3D spaces. Numerous artificial intelligence development

frameworks provide a basic boid implementation [8, 156–158]. The respective implementa-

tions may slightly vary in respect to the acceleration urges and the system wide integration step

sizes for computing the physical state changes. Our interpretations are discussed in detail in

the subsequent chapters.

2.6.3 Physical investigations into swarm systems

The emergent flocking formations in Reynolds’ boids simulations are of great interest to physi-

cists that study the possibilities of symmetry breaking in stochastic systems. Considering an

according simplified model (spherical perception and reduction of the number of considered

urges), Vicsek et al. have shown that solely the alignment urge, explained in the last few

paragraphs, suffices to break the rotational symmetry of random movements and to cause a

collectively coordinated transport [159–161]. Derényi et al. discovered that such phenomena

of collective transport are strongly related to the density, the size and the initial distances of the

35

involved agents [162]. Huepe et al. investigated the impact of scaling noise on emerging flock-

ing formations [163]. Thereby, they could identify characteristic statistical values that allow

to sort out realistic ethological models, e.g. avoiding that too many individuals simultaneously

interact.

It does not take much effort to link the investigations into the interactions of large numbers

of agents or particles with other classes of physical systems, i.e. those coping with statistical

mechanics. Coupled map lattices (CML) represent an according model to study spatiotemporal

couplings [164]. In analogy to cellular automata, the involved particles are arrayed on lattices

that define their neighborhood couplings. CML do not restrict the involved units’ states to dis-

crete values—they may be described through high-order functions. One- and two-dimensional

CML, which bring about easily readable visualizations (as in standard 1D and 2D CAs), are

used to study emergent patterns in [165]. Mathematical analysis was applied to solve CMLs

for the stability conditions in chaotic fluid solutions [166]. Lemaı̂tre et al., for instance, have

connected CMLs and their inherent coupling strengths with collective behaviors [167]. In this

research, the focus is set on the units’ coupling strengths and corresponding emergent pattern

formations, which directly relates to the systems’ interaction topologies (Section 2.5.2).

Tanner et al. explicitly describe a variation of boids through interaction networks [168].

They consider graphs for local inter-agent perception (the sensing network) and for broadcast-

ing certain information, such as the agents’ velocities, via a communication network. In their

model, the agents are drawn together and kept away from each other through energy poten-

tials. With a fixed network topology—sensing and communication network being identical—a

flocking configuration is achieved that minimizes the induced inter-agent potentials: the dis-

tances between pairs of agents are kept minimal and the individuals share the same velocity.

In case of a non-fixed communication network it is instrumental that although the topology is

changing, the individuals remain connected. Otherwise, stable flocking might not emerge.

In his comprehensive work on flocking systems, Olfati-Saber shows that the basic flocking

36

urges introduced by Reynolds can be inferred when considering inter-agent energy potentials

as stress elements of a graph [169]. In addition to coherent velocities and inter-agent distances,

he underlines the flocks’ abilities of splitting, rejoining and “squeezing maneuvers” that occur

when biological flocks are confronted with physical obstacles.

2.6.4 Swarm art

Emergent choreographic flocking of bio-inspired swarms have influenced a great number of art

works. While spontaneous creativity of swarms is reflected in numerous paintings [170], their

potential to coordinate and to show surprising vividness is, for instance, applied in automatic

and assisted music generation [171]. The same features render them ideal as interacting units of

interactive swarm art installations [86] that exhilarate large audiences. Khemka et al. relied on

an artist to guide interactive evolution to generate SwarmScapes, continuously evolving virtual

paintings that emerge from flocking interactions [172].

2.6.5 Evolving swarms

Kwong and Jacob implemented boid systems with homogeneous sets of individuals. Includ-

ing the standard boid urges (Section 2.6.2), each individual was equipped with the following

parameters [83, 84].

angle α Angle of a conic field of perception.

distance d Viewing distance of the perceptional field.

dmin Constant value that defines when neighbors are considered too close (originally referred

to as “crowding”).

maxaccel Maximal acceleration value.

maxvel Maximal velocity value.

37

~w A world center or the goal of the flock’s trajectory.

walign Weight to orientate towards neighbors’ average velocity (alignment).

wcoh Weighing the drag toward the neighbors’ geometric center (cohesion).

wsep Weighing the urge to separate from neighbors that are too close (separation).

wworld Weighing the urge towards a globally defined world center (world center).

wrand Weight of a randomly chosen unit-vector (randomness/noise).

The constants d, dmin and α determine whether an individual reacts to its peers, whereas

a weighted sum of the listed coefficients wx in combination with the respective urge vectors

yields the acceleration of a boid. The boid’s freedom of movement is limited by maxaccel

and maxvel to avoid an unrestrained growth of its acceleration and velocity, respectively. Ad-

ditionally, a world center ~w is provided that determines the swarm agents’ flight destination.

Based on the listed, characteristic parameters Kwong and Jacob discovered boid configurations

that exhibit emergent flocking formations (Figure 2.9). Their search was guided by means of

interactive evolution.

In SwarmEvolve 1.0 Spector et al. extended the array of weights wx by one that activates

the urge towards the closest “energy source” [173]. In their simulation, the boids fed on the

offered energy which they needed in order to flock and reproduce, to outweigh collisions with

peers, and to fend off confrontations with boid individuals that belong to other species. An

individual’s energy multiplied by its achieved life-span was used to measure its evolutionary

fitness. Those individuals that ran out of energy were substituted by a genetically mutated

variation of the currently best phenotype of the corresponding species. As a result of this asex-

ual reproduction, sustaining clusters of boids evolved in which bodies of individuals protected

the clusters they belonged to against other species. Only one individual in each cluster was

responsible for the energy supply. The authors concluded the following.

38

(a) (b)

Figure 2.9: (a) and (b) show the same choreographic swarm. Due to its tendency to switch
from rings to sinuous lines, Jacob and Kwong named it “Big Ring Snake”. (b) depicts a typical
figure-eight formation [83, 84]. The screenshots were generously provided by Christian Jacob.

The entire feeding cloud can therefore be thought of as a genetically coupled col-

lective, or even as a multicellular organism in which the peripheral agents act as

defensive organs and the central agents act as digestive and reproductive organs.

In the same work, Spector et al. also introduced SwarmEvolve 2.0 in which flocking agents

evolve “autoconstructively”. Instead of a fixed formula and a vector of parameters, the agents’

reproduction and flight evolve as genetic programs [96]. Evolved programs even determine

the genotypes of the agents’ progeny. As a novelty, the agents obtained the capability to feed

others as well. In the course of the simulated evolution, sharing food became more frequently

an established practice in case of wandering food sources which resulted in an “unstable envi-

ronment”.

Wright et al. pursued the evolution of emergent phenomena in artificial swarms through

an entropic measure Ω that captures the system’s degrees of freedom in respect to possible

movements [174]. They demonstrated the link between Ω and cluster formation in a very sim-

39

ple flocking simulation comprising 17 individuals subjected to forces based on fluid dynamics

equations: a transition in Ω coincided with a phase transition in the complex flocking behavior.

The authors claim that their entropic measure can be universally applied and they used it to

evolve altruistic feeding behaviors, similar to the ones discovered by Spector et al. Unfortu-

nately, the results by Wright et al. were not conclusive because they could only assume that

their identified altruistic behaviors were better than some randomly evolved behaviors. There-

fore, their main contribution lies in the demonstration of an integrative approach of swarm

dynamics, evolution and complexity measures.

2.6.6 Constructive swarm models

In their simulations, Theraulaz, Bonabeau et al. focused on the construction algorithm as

such, abstracting from any builder agents, solely activating 10 simultaneously executed con-

struction steps [14, 25, 26]. Nest-like constructions emerged when building with two types of

construction elements in a three-dimensional lattice space. In tandem, the different brick types

triggered the corresponding probabilistic and qualitatively stigmergic construction rules. On

the one hand, these algorithms showed that construction behaviors can be identified to retrace

the architecture of numerous wasp species. On the other hand, these numerical experiments

also showed that novel architectural structures can be built based on stigmergic construction

processes.

Figure 2.10 (a) shows a nest-like structure that emerged in a simulation by Pilat [175].

Although Pilat mainly reproduced the results by Theraulaz et al., his implementation deviated

slightly: the construction process was actually performed by randomly moving agents. This

algorithmic design introduced physicality into the model that had previously been abstracted

through probabilistic rules. Pilat also resumed the idea of Bonabeau et al. [25] and evolved

various architectural structures, two examples of which are seen in Figures 2.10 (b) and (c).

Tower structures emerged when Jacob changed the boids simulation in the agent software

40

(a) (b) (c)

Figure 2.10: Pilat’s rule-based lattice-swarm has successfully built a construction resembling
the nest of the wasp family Agelaia [175]. The screenshots were generously provided by
Marcin Pilat.

environment BREVE [8]. He reprogrammed the agents to follow a strong upwards urge and

leave spherical particles behind (Figure 2.11). Thus, Jacob had abstracted from the biologi-

cal inspiration of social insect nest constructions and presented artificial swarms as a simple

computational developmental model.

In 2004, we set up evolutionary experiments to explore the architectural power of artificial

constructive swarm models [176, 177]. Figure 2.12 displays two screenshots of our first con-

structive swarm models: Figure 2.12 (a) shows the outcome of a constructive swarm that used

spherical construction elements of varying radii and colors. The attributes and placements of

the particles as well as the flocking parameters of the involved agents were determined through

an artificial neural network [117]. Its input nodes were fed with state and perception of the

individuals and its weights were trained through interactive evolution. As the ANN considered

a large number of parameters, its training drew too much upon the external breeder: the cycle

of phenotype computation and evaluation took a relatively long time and had little impact on

the swarms’ behaviors. Therefore, another approach was designed and implemented in which

rule-based constructing boid agents were evolved automatically. Their evolution was driven

41

(a) (b)

Figure 2.11: Boid-like agents with a simple upwards flight behavior that pile up spherical
particles.The screenshots were generously provided by Christian Jacob.

through pre-defined three-dimensional structures—the construction activities of the swarms

received high fitnesses when building inside those pre-defined structures. A sample screenshot

of the corresponsing experiments is displayed in Figure 2.12 (b).

In 2007, Zeng et al. presented a system to reproduce “human-like” architecture by means

of evolving artificial constructive swarms [178, 179]. Based on a three-dimensional lattice

space, quantitative stigmergy reigns their system. Pheromone quantities diffuse through the

lattice and decay over time. The agents perceive the encountered pheromone levels as “density

maps” which determine their actions of construction and movement—they crawl on the floor

but can climb obstacles. Agent behaviors were bred by means of a genetic algorithm. As a

fitness function, Zeng et al. also considered the difference between a pre-defined shape and

the actually constructed buildings. They succeeded in re-building the contours of a rectangular

house, even considering space for an entrance door.

42

(a) (b)

Figure 2.12: (a) The construction of an ANN-based swarm that was bred through interactive
evolution [177]. (b) A pre-defined shape (the larger cubes) guided the evolution of the dis-
played construction (smaller cubes) of a rule-based swarm [176].

43

Chapter 3

Swarm grammars

Early 2006, we developed a computational model to integrate the dynamics of swarm systems

[83, 84, 180], their collaborative features [14, 25, 26, 175] and the productivity of generative

representations, similar to L-systems [50]. This effort resulted in the first model of swarm

grammars (SGs) [1–3].

In L-systems, a formal grammar specifies rules that capture the step-by-step growth pro-

cess by rewriting a string of symbols, which are subsequently translated into graphical objects

through a turtle interpretation. A turtle is a virtual drawing device that is navigated in 3D space

following the symbolic commands of the string. In SGs we substitute the turtle interpretation

by a swarm interpretation. Instead of a single turtle following the path described by an L-

system, a swarm of turtle agents interpret the grammar rules. This simple expansion from one

interpreting turtle to a swarm reveals new dimensions in performance, dynamics and complex-

ity of the resulting structures. The swarm agents are not only controlled by the grammar rules,

but have the potential to interact among each other and with their environment. In fact, colli-

sion resolution among branching structures can be accounted for quite easily through parallel

swarm-based turtle interpretation. This does not only lead to more interesting designs emerg-

ing from the swarms dynamics, but also engages the designer in an interactive dialog with the

creative process, by introducing alternate swarms or other static and dynamic environmental

components that can influence a swarms developmental processes. In the following section our

early SG system is presented and tested for the effects of different configurations in respect to

flocking, reproduction and interaction behavior.

Subsequently, this chapter introduces an extended SG system developed in 2008. Therein,

the formulation of conditional reproduction and construction fosters the occurrences of differ-

44

ent types of individuals and coordinated building efforts as inspired by social insect popula-

tions [4–6]. After presenting the extended SG model, some of its creative powers are illustrated

through selected, swarm grammar-based art pieces.

3.1 Basic swarm grammar system

In this section we describe the two key parts of a swarm grammar system: (1) a set of rewrite

rules, which determine the composition of agent types over time, and (2) a set of agent specifi-

cations, which define agent type specific parameters that govern the agents’ interactions.

3.1.1 The swarm grammar

A swarm grammar system SG = (SL,∆) consists of a rewrite system SL = (α, P) and a

set of agents ∆ = {a0, a1, ..., an}. The rewrite system SL is an L-system with axiom α and

production rules P [52]. In the simplest form of context-free 0L-systems, each rule has the

form p → s, where p is a single symbol over an alphabet Ω, and s is either the empty symbol

(λ) or a word over Ω. Each agent ai is characterized by a set of attributes, which can include its

geometrical shape, color, mass, vision range, radius of perception, and other parameters such as

separation or cohesion urges that determine its behavior while encountering its environment.

If the reproduction of swarm grammar agents is not globally timed, an according threshold

might also be stored with the agent definition. The frequency of construction events to leave a

trace behind the agent could also be determined globally or individually. Figure 3.1 gives an

example of such a swarm grammar with two types of agents.

The rewriting process begins with start symbol A. In the first iteration of applying any

matching rules, only the first rule is applicable, hence A is rewritten into AB. At the next

iteration, both rules apply: A is rewritten into AB, and B is rewritten into A. The resulting

string is ABA. Further rewriting will result in the following word sequence:

45

Figure 3.1: The boxes show BREVE code fragments that determine an SG system with a set of
reproduction rules and an axiom (left box) and sets of agent attributes (right box).

t0 : A

t1 : AB

t2 : ABA

t3 : ABAAB

t4 : ABAABABA

...

Here each ti represents a decision point where an agent triggers the application of the next

SL-system iteration with the string describing the current composition of the swarm. In the

example above we have five type-A and three type-B swarm agents after decision point t4.

Figure 3.2 shows the first steps of the swarm interpretation in 3D space. The single type-A

agent starts its vertical ascent, building a cylindrical shape on its way. At decision point t1

agent A is replaced by a new agent of type A and a type-B agent. A-agents are the ones that

move upwards, whereas B-agents build a bent branch tip (Fig. 3.2(c)). At time point t2 agent

A is replaced by agents of type A and B, and the former B-type agent is replace by an A-agent.

Figure 3.2(f) illustrates the branching structure resulting after a few more iterations.

46

(a) t0 : A (b) t1 : AB (c) t1 < t < t2

(d) t2 : ABA (e) t3 : ABAAB (f) t > t3

Figure 3.2: Step-by-step illustration of swarm interpretation in 3D space (see text for details).

3.1.2 SG agent behavior

In analogy to the boids flocking model introduced in Section 2.6.2, a swarm agent in our

demonstrations is represented as a pyramid pointing in the direction of its velocity vector. Its

flocking behavior is also geared to the boids model and its extension (Section 2.6.5). The

boid parameters, including the description of the field of perception and the weights of various

acceleration urges, are part of an agent’s attribute set.

The respective acceleration urge vectors for alignment (~va), cohesion (~vc), separation (~vs)

as well as the urge towards the world center (~vw) are computed at each simulated time step

according to the following assignments. At any given point in time, Ni denotes the set of

neighbors perceived by boid i, Si ⊆ Ni comprises all those neighbors whose distance to i is

47

smaller than dmin and ~pi denotes i’s position.

~va :=
1

|Ni|
∑
j∈Ni

~vj (3.1)

~vc :=
1

|Ni|
∑
j∈Ni

~pj (3.2)

~vs :=
1

|Si|
∑
j∈Si

~pj (3.3)

~vw := ~w − ~pi (3.4)

Fluctuations are introduced into the flight patterns by adding a weighted random unit-vector

~vr. The acceleration vector ~ai of a boid results from the following weighted sum of urges1.

Integration of the boids’ accelerations and velocities is executed automatically by the BREVE

simulation engine using its default integration step size [8].

~ai := walign~va + wcoh~vc + wsep~vs + wworld~vw + wrand~vr (3.5)

During the agents’ flight, grammatical production determines the agents’ transformation.

That is to say, the agents can produce new agents of identical or different types, turn into differ-

ent types or remove themselves. The following sections provide examples of these grammatical

rules. Additionally, the basic SG model incorporates the individuals’ ability to build structures

by leaving construction elements in virtual space. A schematic illustration of this process is

depicted in Figure 3.3.

3.1.3 Pseudocode

The connection between boids and L-Systems on the one hand and basic swarm grammars

on the other hand becomes especially clear when looking at the according pseudocode. In

a generic boids simulation (Section 2.6.2), two loops are executed in tandem (Algorithm 1).

1The basic boid flocking parameters can be read in many ways. If not applied to living organisms such as
bacteria, birds, or even human beings, they could be interpreted as repelling and attracting forces of a physical or
chemical nature as well.

48

time

Figure 3.3: This qualitative diagram shows an SG agent building cylinders along its route.

One computes the neighborhood dependencies of a boid from which its acceleration vector

is inferred. In the second loop, integration of this vector and the resulting velocity results in

the boids’ new locations. An implementation of a basic L-system (Section 2.2.3) generates a

string similarly to a formal grammar, but through concurrent instead of sequential substitution

of symbols (Algorithm 2). Afterward, the generated string is transformed into graphical struc-

tures by means of the turtle interpretation. The basic swarm grammar algorithm (Algorithm 3)

merges both systems by (a) integrating the construction of graphical structures into the flight

mechanism of boids and (b) by promoting agent reproduction.

Algorithm 1 Boids
Require: number of boids M , flocking parameters F , #iterations, dimensions D

initialize M boid agents with small random velocities within D
for #iterations do

for all boids do
compute neighbors N based on F
compute acceleration based on N and F

end for
for all boids do

update velocity according to its acceleration
update location according to its velocity

end for
end for

49

Algorithm 2 Basic L-system
Require: axiom α, production rules P , #iterations
Ensure: development string S

initialize S with α
for #iterations do

concurrently substitute the symbols in S according to P
end for
for all symbols in S do

feed the given symbol graphically into a ’turtle interpreter’
end for

Algorithm 3 Basic SG
Require: axiom α, production rules P , set of agents ∆, #iterations

initialize agent α ∈ ∆
for #iterations do

for active agents ai ∈ ∆ do
compute neighbors N
compute acceleration based on N and ai

end for
for active agents ai ∈ ∆ do

update velocity of ai according to its acceleration
update location of ai according to its velocity
if construction event then

add current location to geometrical trace
end if
if rule application event then

substitute ai according to P
end if

end for
end for

50

3.2 Exploring the basic swarm grammar model

Now let us have a look at the effects that emerge when we modify the set of production rules

and the agent parameters that determine their flocking behaviors. The following examples will

demonstrate the high degree of interaction dynamics and the resulting variety of outcomes to

be expected from swarm grammar systems that build 3D structures.

3.2.1 Changing the SL-system rules

We first discuss a small sample of tree-like structures that result from various sets of production

rules. In order to illustrate some of the basic effects, we use only a fairly limited number of

swarm agents. We focus on three swarm agent types, A, B and C. Initially, all agents are

oriented upwards, and will move towards the top (increasing their y coordinate). Some of the

agent types are urged to separate and to move randomly. The corresponding flocking weights

are: wAsep = 0, wArand = 0.01, wBsep = 1.7, wBrand = 0.01, wCsep = 13.7, wCrand = 0. The

remaining flocking urges (walign, wcoh, wworld) are set to zero. All the generated examples ran

for 80 simulated seconds.

The interpretation of swarm grammar SLa = (α = A,P = {A → AB,B → A}) results

in a tree-like structure with sparse branches, which makes it easy to analyze (Fig. 3.4(a)). The

natural look of the overall tree can be attributed to the small degree of random movements

of both types of agents. A-type agents move upwards with no urge to separate, whereas any

B-agent moves away from agents of type A, due to its urge for separation (wBsep = 1.7). Hence

the arrangement of the branches is mainly a consequence of the agents interactions. Even with

the grammar SLb, the style of the tree looks similar to the structure from SLa (Fig. 3.4(b)).

A different branching pattern is shown in Figure 3.4(c), where a slightly larger number of A-

agents is generated at each decision point by adding an extra A-type agent compared to SLa.

This leads to bursting agent reproductions, a more expansive growth of the branches, and the

51

formation of a denser canopy. The small green objects at the branch tips represent the swarm

agents that are still to finish their next building step. However, an increased number of gener-

ated agents does not always mean that the complexity of the emerging structures increases as

well. The SL-system in Figure 3.4(d) produces a large number of agents, but the outcome is

quite simple, as type-B agents only get the chance to establish a short side branch and are re-

moved before the next building step. In Figure 3.4(e), a third agent type, C, is added, which has

a very high separation urge with no random component added. As C-agents are also oriented

vertically at their time of creation, they are responsible for the vertical branch endings.

52

Pa = {A→ AB,B → A} Pb = {A→ BAB,B → A} Pc =, {A→ ABA,B → A}
(a) (b) (c)

Pc = {A→ BBBABBB,B → λ} Pd = {A→ BBBABBB,B → C,C → λ}
(d) (e)

Figure 3.4: Examples of branching SG structures.

53

3.2.2 Changing the agent parameters

Instead of changing the SL-system rules, we are now going to modify the agents flocking

parameters and look at the consequences with regard to the generated 3D structures. We start

from a swarm grammar with a single rule that enables forked branching: SGsimple = (α =

A,P = {A → AA},∆). At each iteration step, one type-A agent reproduces into two A-

agents. As there is only one type of agents (a homogeneous swarm), they all share the same

flocking parameters listed in Table 3.1. These settings were reported by Kwong [83] who

investigated swarm interaction patterns and their evolution in more detail, see also Section

2.6.2. Figures 3.5(a), (b), and (c) show snapshots of a line formation, a ring formation, and a

loose cluster emerging from the parameter sets (1), (2), and (3) in Table 3.1, respectively.

walign wcoh wsep wworld wrand dmin amax vmax

(1) 5 10 1 14 1 0.14 39 9

(2) 7 8 5 8 5 0.14 38 13

(3) 2 0 5 7 6 0.23 40 6

(4) 7 3 2 6 3 0.01 40 6

Table 3.1: Flocking parameter sets that lead to: (1) the so-called large ring formation, (2) a line
formation, (3) a loose stationary cluster swarm, and (4) a messy figure eight formation [83,84].

The bottom images in Figure 3.5 show the structures that result from using the same types

of agents to interpret swarm grammar SGsimple as described above. The building blocks of

the depicted structures bear different colors (or grey levels) so that their composition over time

is visualized. Lighter-colored building blocks are built earlier. The structure in Figure 3.5(d),

for example, was built from left to right, with intermittent changes of the swarms direction.

This construction does not seem to involve any branching due to agent separation urges. The

smooth bands originate from the agents almost perfect flight coordination while constructing

very similar, almost parallel fibers. Looking a little closer, however, reveals a small gap at a U-

54

(a) (b) (c)

(d) (e) (f)

Figure 3.5: From flocking choreography (a,b,c) to the corresponding SG sculptures (d,e,f).

turn slightly off the center at the top right of the image. The structure in Figure 3.5(e) evolves

spherically from a center point. The large ring flocking behavior of the swarm contributes

to a spiky and impulsive character of this growing sculpture. Our third example of combin-

ing choreographic swarms with swarm grammars involves flocking behavior where the agents

form loose, temporary clusters, then disperse and regroup to form new clusters at a different

location. This behavior is induced by the parameters in Table 3.1(3). The formation of one of

these clusters is depicted in Figure 3.5(c). Looking at the corresponding structure built by the

swarm grammar agents, the sites of cluster formation are clearly identifiable as knots. Since

the flocking parameters allow for a rather dynamic flight, single agents can leave one cluster

and join another one at a different location.

55

3.2.3 Interaction with the environment

In this section we present three different kinds of interaction with both static and dynamic

elements within the environment. Table 3.2 lists the parameters for the six types of agents we

are going to employ.

walign wcoh wsep wworld wrand dmin amax vmax

D 0 0 0 10 10 0 30 2

E 0 10 0 1 2 10 30 5

F,G,H 10 80 0 1 4 10 10 27

I 11 33 10 5 0 1 27 2

J 10 0 80 1 4 10 10 4

Table 3.2: Flocking parameters of a set of agents.

Swarm–object interaction

Figure 3.6 shows an example of agents interacting with non-moving objects in their environ-

ment. Agents of types F, G and H tend to move towards the world center, which, in this case, is

located beyond the wall and far up in the sky (like a sun). Whenever a swarm agent tries to pen-

etrate the wall, it bounces back as its velocity vectors x- and z-coordinates are reversed. This

implements a simple collision detection with static objects. As soon as the swarm structure

has outgrown the wall, the agents are no more prevented from moving towards their destina-

tion. As soon as the world center becomes dynamic, its movement pattern is reflected in the

construction of those swarm agents that tend towards it. In Figure 3.7 the world center orbits

far up in the sky and around the y-axis of the simulation. Both agent types, D and E, are

attracted towards the moving world centre. Consequently, the structure they build reflects an

upward, twisted growth pattern. In order to better recognize the constructors, D-type agents

are assigned a very light and agents of type E a darker color. As D-agents do not feel the

urge to separate from their neighbors, they almost perfectly drive up-wards around the y-axis.

56

The constructions from agents of type E outgrow the ones from the D-type since E-agents are

allowed a greater maximum velocity (compare Table 3.2).

(a) SLa = {F → GHFGH,H → G,G→ ∅} (b) SLb = {J, {J → JJ}}

Figure 3.6: Examples of SG interaction with a static environment. (a) The SG agents are
blocked from their destination by the wall. (b) Additional bricks are standing out to further
impede the SG agents’ progress.

Swarm–swarm interaction

In the previous examples, the swarm grammar agents were interacting with either static or

dynamic objects. Now, consider a second swarm that is not part of a swarm grammar, but

exhibits flocking behavior within the environment. Both swarms influence each other as soon

as some of their individuals enter the field of vision of the other swarm agents. These swarm–

swarm interactions are hard to capture in a screenshot. However, the swarm grammar agents

witness the exertion of influence from the other swarm by leaving a trace in the 3D construction

space. We look at another simplistic swarm grammar:

SGstraight−up = (α = I, P = {I → I},∆)

57

SL = {D → EDEDE,E → ∅}.

Figure 3.7: Example of SG interaction with an oscillating, dynamic object.

Figure 3.8(a) shows the structure that is built by this swarm grammar, with no elements

interacting with the swarm agents. The movements of the type-I agents are not driven by any

randomness, so that any deviation from the presented structure has to be seen as the result

of other external factors. The agent parameter settings are listed in Table 3.2. Figure 3.8(b)

displays a scene where the interaction between both flocking and swarm grammar agents is

still in progress. The blue pyramidal shapes represent (non-building) agents that organize their

flight in a figure eight formation (parameters according to Table 3.2 and taken from [83]). As

a result of the interactions between the building swarm and the flocking swarm, a completely

different structure emerges. When one observes this construction during run time, the influence

of the swarm grammar agent on the other swarm is fascinating to watch: as long as the swarm

grammar agent is present, there is a very high probability of the other flock-mates to interact

with it, as the figure eight formation usually occurs around the world center.

58

(a) (b)

Figure 3.8: An example of interactive SG interactions. (a) An agent of type I , which considers
a simple upwards draft. (b) Agent I influenced by 30 agents that fly in a messy figure eight
formation (Table 3.1).

59

3.3 The extended swarm grammar model

We learn from social insect swarms that when stigmergic interplay directs the collective con-

struction efforts, sophisticated and robust buildings can emerge (Section 2.1). Thus, we have

extended the basic SG model by event-based construction and reproduction rules. The activa-

tion of a behavioral rule (Figure 3.9) can be triggered by timers, the perception of a specific

construction element or swarm mate (Figure 3.9(a)), a pheromone, or plain chance. For in-

stance, in Figure 3.9(a) green agents (triangles) and construction elements (boxes) are within

the neighborhood perception of the blue swarm agent. This agent is urged to align with the

perceived agents’ orientations (upper arrow) and to separate from its flock mates (lower ar-

row) at the same time. From time to time the agent also places construction elements along its

way (blue boxes). Empty rule heads result in the unconditional application of the rule body,

whereas several conditions are interpreted conjunctively. Correspondingly, all directives listed

in a rule’s body are executed successively. The swarm agent can change its world center to

the fixed location of a construction element or template and even project it to a dynamically

re-positioned fellow agent. As in the basic SG model, a rule can cause a (grammatical) swarm

agent substitution, thereby reproducing, differentiating or removing the agent from the simu-

lation. Third, instead of continuous construction, an agent places a construction element or

a template as result of an according behavioral rule. Templates, like pheromones, disappear

after a certain time interval and do not contribute to the outcome of the construction but help to

coordinate the construction process. Templates can be evaluated qualitatively or quantitatively

(see Section 2.1.1). Different basic construction elements are provided to support the building

efforts. As common in architecture [102], we suggest the differentiation of rods, bodies and

layers. Figure 3.9(b) depicts the encoding of a rule taken from an evolved swarm agent: With

a probability p = 0.5 the agent places a template and a cubic body construction element in

60

space at each time step2. The behavioral rule displayed in Figure 3.9(c) orders the agent to pro-

duce the agents A and B and to place a construction element (rod) when it finds a construction

element within its neighborhood.

<RULE>

</RULE>

</HEAD>

</BODY>

<HEAD>

<BODY>

Probability 0.5

Construction Template

Construction Body dynamic

<RULE>

</RULE>

</HEAD>

</BODY>

<HEAD>

<BODY>

Construction Rod

Construction Template

Reproduction A B

(a) (b) (c)

Figure 3.9: A new design of SG agent behavior. (a) All stimuli, swarm mates and construction
elements, govern the agent behavior.(b) Construction of two elements is triggered with proba-
bility 0.5. (c) On sight of a template, the SG agent executes reproduction and construction.

3.3.1 Swarm grammar art

Three-dimensional sculptures made by SG systems (Figure 3.10) served as inspirational basis

or integral visual and structural parts for several collaborative projects between art and com-

puter science. The deployed SG sculptures were computationally evolved (see the next chap-

ter) or manually designed. Figure 3.11 displays two art pieces that integrate three-dimensional

sculptures grown by basic SG systems.

Stimulated by the architectural capabilities of extended SGs (Figure 3.10(b)), we combined

swarm structures to create surreal, artificial worlds (Figure 3.12). In about 40 interactive evo-

lutionary experiments, the artist bred the utilized SG structures, relying on the Mathematica

2The keyword dynamic that occurs in the rule in Figure 3.9 means that the body construction is rotated accord-
ing to the agent’s orientation.

61

(a) (b)

Figure 3.10: (a) An SG system that implements a pulsating size of the built construction ele-
ments. (b) An architectural design by an extended SG system furnished with several different
construction element.

library Evolvica for the evolutionary algorithm [52] and the user interface Inspirica [83]. A

chameleon and a bighorn sheep are immersed in two complementing artificial environments.

The original SG structures are displayed in Figure 3.13.

During the evolutionary runs, we mainly pursued two objectives. Firstly, firm beams should

emerge that convey robustness and can form a structural mesh, openening vast spaces by their

mere existence. Secondly, fuzziness, continuity and organic looks should warrant the authentic-

ity of the generated virtual worlds. The color gradients in the backgrounds reflect the extreme

climates of the habitats of the projected animals. They also highlight the sound, wholesome,

fluent structural architecture in Figure 3.12(a) and the liveliness and dynamics caught in the

erratic structures of Figure 3.12(b) with ’warm’ and ’cold’ palettes, respectively. The decision

to leave white spaces for the only elements in the paintings that do not originate from binary

computations, namely the animals, can be interpreted in many ways. An exciting explanation

62

could be our early stage in computational development and that the unification of virtual worlds

and reality has not yet streched out far enough to seemlessly blend.

Figures 3.14 and 3.15 show two examples in which an SG structure (left-hand side) inspired

traditionally crafted and painted art (right-hand side) by the Canadian artist Joyce Wong [5].

The base of the pyramidal swarm construction (Figure 3.14) is rigid and shines in cold, steel-

blue colors. In contrast, tentacle-forming swarms wind from its peak. The explosive polarity of

the pyramid inspired the piece [Manifest] that places the swarm pyramid into a new context, in

which “unrequited thoughts seek ways to escape” (12” x 24” black gesso, acrylic on Masonite).

Painted layers were scratched away to reveal the raw Masonite surface. Soft swipes led to a

semi-transparent reflection of the rigid pyramid foundation. Energetic cuts at the pyramid’s top

lend the painting real structure. In the first panel of the diptych [Outlining Blues] (Figure 3.15)

“a distortion of the swarmettes formulates a Whale-like specimen as it swims in a peaceful

surrounding. The second panel leaps backward in time and depicts first organisms coming into

existence” (both 12” x 24” oil paint and rusting agents on metal).

63

Figure 3.11: Two art compositions made from basic SG structures.

64

(a) (b)

Figure 3.12: Diptych of the two pieces (a) “caméléon” and (b) “bighorn sheep”. Acrylic
medium on canvas, 23” x 38”.

(a) (b)

Figure 3.13: Selections of SG structures bred for the diptych displayed in Figure 3.12. They
are arranged similar to their appearance in the paintings.

65

(a) (b)

Figure 3.14: (a) Swarm grammars growing a pyramidal structure inspired (b) the artwork ’Af-
termath’.

(a) (b)

Figure 3.15: (a) Swarm grammars built on the rapid interplay of black outlining agents and
orange stem growth inspired (b) the artwork ’Outlining Blues’.

66

Chapter 4

Breeding swarm grammars

A swarm grammar system usually consists of several agent types, each one comprising ten

flocking parameters and possibly large numbers of behavioral rules. Visual features of the

emerging structures might require additional bits of information. The entirety of the resulting

configuration data in combination with the corresponding emergent interaction processes al-

lows for a vast variety of swarm grammar structures. In order to explore a broad variety of

structures, we rely on evolutionary computation (see Sections 2.3 and 2.4).

For furthering the swarm grammar model, an approach of interactive evolution has proven

useful [2]. This approach and the results are presented in the first section of this chapter.

Afterwards, explorations of an immersive breeding approach are described [3]. This chapter

concludes with recently implemented ideas to automatically evolve swarm grammar structures

[4].

4.1 Interactive evolution

We use an extension of Inspirica [83, 84], one of our evolutionary design tools, to explore the

potential of generating swarm grammar systems that exhibit intriguing constructions. As illus-

trated in Figure 4.1, a collection of swarm builder simulations is simultaneously presented to

the user. Figure 4.1(a) illustrates the concept of interactive evolution schematically. The pheno-

types p0 to pn are computed separately and manually inspected and rated. The assigned fitness

values determine the selection probabilities of the genetic operators: mutation and crossover.

Arrows illustrate the flow of information, whereas dashed lines represent visual inspection.

Figure 4.1(b) depicts the Inspirica GUI for interactive evolution. Each window shows the in-

67

(a) (b)

Figure 4.1: (a) The concept of standard interactive evolution. (b) The Inspirica [83] user inter-
face helps to evolve swarm grammars.

terpretation (phenotype) of a different swarm grammar configuration (genotype). The windows

display the construction processes as they occur. All designs are true objects in 3D space, hence

can be rotated, zoomed and inspected in various ways. After assessment of the twelve presented

structures, the external breeder assigns fitness values between 0 and 10 to each solution, and

proceeds to the next generation. The number of presented specimen was set in accordance with

the monitor size. In the given case, 12 windows fit comfortably on a 20” cinema screen, still

revealing enough details to the breeder to quickly evaluate the structures in each window. We

also successfully ran versions with 9 and 15 windows for 12” and 23” monitors, respectively.

The assessment values 0 to 10 are provided by Inspirica as the default evaluation scale. We did

not change this setting as it complies with the breeder’s desire for a wide range of choices but

does not present an overwhelmingly large variety of values.

Inspirica is the GUI for interactive user evaluation of the presented specimen. Evolvica,

on the other hand, is the evolutionary computation engine, also written in Mathematica, that

operates on the genetic material and its associated fitness values. To integrate swarm grammars

into Evolvica, the rewrite rules and agent parameters are represented as symbolic expressions,

68

so that genetic programming (GP) can be used to evolve both the set of rules as well as any

agent attributes [52]. The following paragraph depicts the template structure used by Evolvica

to generate expression patterns for swarm grammars.

SwarmGrammar[

_AGENT,_AGENT,_AGENT,

_RULESET,

_SEEDS

],

RULESET[_RULE,_RULE,_RULE,_RULE,_RULE],

AGENT[

_WANDERCONST,

_WORLDCENTERCONST,

_MAXVEL,

_MAXACCEL,

_RGB,

_WORLDCENTERURGE,

_NEIGHBORHOODSIZE,

_NEIGHBORHOODRADIUS,

_NEIGHBORHOODURGE,_NEIGHBORHOODURGE,_NEIGHBORHOODURGE,

_ENERGYLOSS,

_ITERATIONSTILLDRAWING,

_ITERATIONSTILLBRANCHING,

_SCALE,

_NUMBEROFEDGES

],

RGB[_RGBR,_RGBG,_RGBB],

69

WORLDCENTERURGE[_WCX,_WCY,_WCZ],

NEIGHBORHOODURGE[

_AGENTSYMBOL,

_VELOCITYCONST,

_SPACINGCONST,

_CENTERCONST

],

RULE[_HEAD,_BODY],

HEAD[_AGENTSYMBOL],

BODY[_AGENTSYMBOL,_AGENTSYMBOL,_AGENTSYMBOL],

SEEDS[_SEED,_SEED,_SEED,_SEED,_SEED],

SEED[

_AGENTSYMBOL,

_SEEDX,_SEEDY, _SEEDZ

]

Developmental rewrite systems are usually rather sensitive to changes in the genotypes

which can result in vastly different growth structures and developmental processes. Therefore,

for the examples we present here, only context-free rules with a maximum string length of

three (|s| = 3) are applied. We allow at most five rules per SG-genotype. GP mutation and

crossover are the only genetic operators. In addition to the values that determine the agents’

neighborhood perception (NEIGHBORHOODSIZE and NEIGHBORHOODRADIUS) and

the weights to accommodate the basic flocking urges (WANDERCONST, WORLDCENTER-

CONST, VELOCITYCONST, SPACINGCONST, CENTERCONST), there are several val-

ues that specify the construction geometry and visualization of an SG agent. Before explaining

those values in detail, we want to emphasize that in the given model an agent makes a distinc-

tion regarding the types of its neighbors. Since we limit the amount of agent types to three,

70

an agent is equipped with an according set of NEIGHBORHOODURGES for each possible

agent type. ENERGYLOSS defines the amount of energy an agent looses at each computa-

tional step. The initial amount is fixed but the metabolism can differ individually, allowing an

agent to live for an arbitrary time-span. ITERATIONSTILLDRAWING and ITERATIONS-

TILLBRANCHING determine the numbers of iterations that have to pass until a construction

event or a rule application event are triggered (Algorithm 3). SCALE is a factor to define the

relative size of the constructed cylinders, whereas NUMBEROFEDGES specifies their shape.

Five axiomatic SEEDs are initialized at the beginning of an SG simulation. Since all the seeded

agents are placed on the ground, only two dimensions (x and z in the given case) have to be

randomly chosen (y = 0). The following paragraph shows the detailed value ranges of the

according parameters:

wanderConstRange={0,1};

worldCenterConstRange = {0,1};

worldCenterRange = {-1000,1000};

maxVelRange = {0,25};

maxAccelRange = {0,40};

iterationsTillBranchingRange = {20,150};

iterationsTillDrawingRange = {15,30};

rgbRange = {0,1};

neighborhoodSizeRange = {50,150};

neighborhoodRadiusRange = {2, 6.28};

neighborhoodUrgeRange = {-2, 2};

energyLossRange = {0,0.25};

scaleRange ={0,2};

numberOfEdgesRange = {3,13};

xzSeedRange = {-50,50};

71

agentSymbolsRange = {0,3};

Figure 4.2 shows selected examples of such evolved structures which reveal the potential

of form generation through SG systems. Example (a) shows pointy yet smooth conic nodes

that connect with long thin branches. The structure in (b) resembles a flower-like structure.

Whenever ramifications in the structures tend to thin out, it is due to an internal loss of energy

that the building agents experience and which determines the diameter of the building blocks.

The individual energy consumption is part of the agents’ attribute sets and may consider flight,

reproduction and construction. (c) reminds of an organismic structure with growing tips. Ex-

ample (d) shows the interwoven 3D pattern created by several groups of spinning and whirling

swarm agents. The strong contrast of thin, darker pins and bulkier construction elements in the

somewhat symmetric structure (e) triggers the idea of a functional design, e.g. for grasping. (f)

and (i) are two more instances that directly evoke associations with common plants—pepper

and roses in the presented cases. In (g) an architecturally interesting design is shown that was

also utilized in an arts collage [5]. Most characteristic for the structures (h) and (k) are the

symmetric separation urges that exercised on the building agents and the tandem of lean and

voluminous cubic construction elements. Due to the continuous and interconnecting construc-

tion elements in (j) and (l) both structures obtain an ’organic’ look.

72

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.2: Examples of computationally evolved swarm grammar structures.

73

4.2 Immersive evolution

The isolated swarm grammar phenotypes (Figure 4.1(b)) develop independently of each other.

Their individual breeding spaces as well as the interface of the supervisor can be integrated

into one comprehensive virtual environment.

A single breeding ground has several advantages such as the ability to concurrently oversee

large numbers of phenotypes (Figure 4.3) or to flexibly experiment with the provided specimen.

In a co-existing and co-evolutionary setup, the encountered phenotypes can be the result of

massive interactions of swarm agents. Thus, one can identify robust swarm grammars that

generate stable phenotypes that thrive in isolation and in densely populated environments.

(a) (b)

(c) (d)

Figure 4.3: Screenshots of an exploratory trip into immersive breeding grounds. In (a) the
external breeder is browsing through a population of SG specimen. (b) and (c) show close-up
impressions of SG structures that are under development. (d) provides an overview of the
breeding ground.

74

4.2.1 Spatial breeding operators

Figure 4.4(a) schematically illustrates an immersive evolution scenario. It integrates the com-

putation of the phenotypes, p0 to pn, as well as the evolutionary manipulation of the underlying

genotypes. In the diagram arrows depict the flow of genetic material, induced by spatial breed-

ing operators.

Our user interface for an according immersive evolutionary scenario integrates two aspects:

(1) visual representation and (2) intuitive manipulation by an external breeder or designer. The

visualization interface enables moving, rotating, and zooming of the camera, or saving and

restoring specific views and scenario settings. Most of these procedures are already incorpo-

rated in the agent software environment BREVE which we use as the primary visualization and

simulation engine in our breeding experiments [8].

In addition to aspects of visualization, the supervising breeder is equipped with tools to

select, group, copy, and move swarm grammar agents, thus being able to influence the course

of evolution within the emerging scenario. The set of possible manipulations also includes

mutation and crossover operators to manually trigger changes of the genotypes that encode the

swarm grammar rules and the agent parameters. Any of these operations can be performed

through a breeder volume that can be created and moved in 3D space to enclose several swarm

grammar agents, see Figures 4.4(b) and (c). Once selected, the agents’ states or properties

can be manipulated, or genetic operators can be introduced. Swarm agents that pass through a

volume (a sphere in this case) can be influenced in various ways. We use breeder volumes for

the crossover and mutation operators, for moving and copying swarm agents, and for boosting

their energy levels. Analogous to the watering of plants fitness evaluations are only given

implicitly by providing more energy to selected groups of agents. Having selected a subset of

agents, the breeder volume can still be moved in space. The previously established selection

of agents is visualized by a set of corresponding, connecting lines (Figure 4.4). Through this

mechanism, spatial operations, such as relocation of the agents, can also be performed.

75

(a) (b) (c)

Figure 4.4: (a) Schematic diagram of an immersive evolution approach. (b) A breeder vol-
ume to select and manipulate a subset of SG agents. (c) Previously enclosed agents remain
associated with the breeder volume.

4.2.2 The swarm grammar gardener

Figure 4.5 illustrates how a breeder can influence the emerging building processes within a

simple ecology of swarms. In Fig. 4.5(a) two swarm agents have built a cylindrical structure

with a side branch. Both agents, which have run out of energy, are still visible at the top

left and to the right of this construction. In the next step (Fig. 4.5(b)) a breeder sphere is

introduced so that it encloses the agent on the right. Through a contextual menu, this agent

is ‘revived’ by replenishing its energy reservoir. Subsequently, the agent resumes its building

process, generates an additional side branch and extends the overall structure further to the right

(Fig. 4.5(c)). A similar procedure is applied to the agent on the left. It is captured by the breeder

sphere and triggered to first replicate, i.e., make copies of itself, and then resume construction

(Fig. 4.5(d,e)). This generates further expansions of the structures and—after further energy

boosts (Fig. 4.5(f))—results in the structure depicted in Figure 4.5(g). The pattern continues to

grow until the agents run again out of energy.

This is only a simple example of how external manipulation by a breeder, the ‘gardener’,

can influence the agent behaviors, the building or developmental processes. Their evolution as

agents can change their respective control parameters during replication. Agents of a specific

76

type share a swarm grammar, but agent groups can be copied as well, so that they inherit a new

copy of their own swarm grammar, which may also evolve over time, either automatically or

through direct influence from the gardener. Due to the large number of growth processes that

are taking place concurrently, detailed observations of the developments are not easily possible.

Consequently, the breeding decisions in immersive space are strongly influenced by subjective

perceptions. Once the seemingly interesting specimen are isolated, systematic experiments can

be conducted. To further the immersive breeding approach, we therefore suggest a focus on

usability and practicability for follow-up implementations. For instance, we recommend an

automatic storage database for genotype samples with an interface for instantaneous and easy

access from within the virtual space. There should also be a vast number of breeding grounds

available so that selected specimen can be copied and isolated independently from the ecology

of their first appearance. Furthermore, graphical visualization (conceptual or textual) of the

operations performed on the genotypes could be helpful.

77

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4.5: Illustration of interactive manipulation of SG agents by an external breeder.

78

4.3 Automatic evolution

Once a concrete design task is chosen for a swarm grammar system, certain constraints on

the growing structure can be formulated. Afterwards, the power of innovation of evolutionary

computation can be harnessed to automatically create assortments of SG designs. In addition

to the analysis of the genotype of a swarm grammar (also referred to as the code or the con-

figuration of the SG), fitness assignment can be mainly performed on two other levels: (1) the

construction processes and (2) the emerging structures. Structural analysis is either very course

grained, considering for example the overall volume and the proportions, or computationally

very costly, for instance when attempting to identify hierarchies and re-occurring modules.

Therefore, we put an emphasis on the observation and classification of the construction pro-

cesses.

In particular, we promote productivity, diversity and collaboration and prevent computa-

tional outgrowth. In order to measure productivity the SG constructions are compared with

pre-defined structures. Diversity is determined as the ratio of possible agent types and actu-

ally expressed agent units, as well as the according ratio of deployed construction materials or

construction mechanisms. In order to foster collaboration between the SG agents, we protocol

the average ratio of perceived neighbors - too low values imply that no interactions are taking

place, whereas too great values mean that the agents are trapped within small spaces. As the

basic swarm grammar model can be extended in accordance with the respective application

task, SG agent collaboration may also be reflected in the amount of effective communication

between the agents.

Randomly initialized swarm grammar systems can quickly exhaust the provided computing

powers: Fast, possibly unconditional sequences of SG rule applications may result in exponen-

tial agent reproduction rates. Temporarily such explosions of activity could be beneficial, for

example in designs integrating large numbers of ramifications. In the long run, however, such

79

an outbreak of computing requirements has to be stopped. As a simple means to prevent de-

structive outgrowth, yet allowing for temporary leaps of activity, we suggest setting a time

limit for the construction process and filtering out inefficient SGs during the evolutionary ex-

periments. A concrete implementation of the suggested automatic evolution process of SGs is

presented in the next chapter.

80

Chapter 5

Swarm grammar architecture

An implementation of the constraints mentioned above led to a variety of aesthetically innova-

tive architectural idea models [4]. Traditionally, these models are the first three-dimensional

realization of an architectural idea, still omitting details of its actual construction. In regards of

rewarding productivity of a swarm grammar, we measured the emergent architectural structure

against a solid cube. Construction elements built inside the pre-defined cubic shape contributed

positively to a SG’s fitness, whereas constructions outside the cube diminished it [176]. We

count the events of successful stigmergic communication in SGs to foster coordination of the

agents’ activities. In particular, we consider it a successful communication event whenever a

construction or reproduction rule of an agent is triggered by a stigmergic stimulus.

5.1 Evolutionary setup

First, we describe how swarm grammars are encoded and modified during the evolutionary

process of this approach. Second, we explain details of the process of fitness evaluation that

directs the evolutionary search for architectural idea models.

5.1.1 Genotype and GA

In our breeding experiments we evolved populations of 20 swarm grammars over at least 30

generations. Each swarm grammar comprises 5 swarm agent types which are described by

their flocking parameters [13, 83] and by sets of at most 10 behavioral rules as described in

Section 3.3. As genetic operators we apply fitness proportionate selection, elitism, mutation

and crossover. How the two latter operate on the swarm grammar genotypes is explained in

81

the following paragraphs. The genotypes are encoded in tagged lists of key-value pairs, as

illustrated in Figure 3.9.

Only one fourth of the next generation is subjected to mutation which is applied with a 50%

chance to each gene. Numerical values are changed in accordance with a normally distributed

maximal step size of 0.2. Hereby, the following intervals are considered: The flocking weights

for cohesion, alignment, separation, for the world center urge and for the random urge are

normalized to values between 0.0 and 1.0. An agent’s mobility is limited to the absolute values

15 for velocity and 30 for acceleration. Its perception extends at most to a 5.0 radians radius

and reaches at most ten units. The separation urge impacts an agent’s acceleration only if

its neighbors are not further than 5.0 units [83]. On mutation, rule conditions and actions

are equally likely generated anew, deleted, or inserted. In the generation of conditions and

actions each available directive, e.g. ’Change focus’ or ’Reproduce’, are chosen with the same

probability. If a directive requires a parameter, it is chosen randomly as well. For instance, if

’Construction’ has been determined as new directive, ’Rod’, ’Body’, ’Layer’ and ’Template’

are equally likely chosen as its parameter.

5/8th of the next generation of swarm grammars result from recombination of the parents.

Each behavioral rule and the lists of flocking parameters that appear in the genotype of a swarm

grammar are used for recombination. Here, too, we apply the operation on each considered

gene with a 50% chance. An alternative crossover implementation considers only the agents

of a swarm grammar for recombination. Elitism transfers the fittest eighth of the parents to the

next generation.

Individuals that are not assigned a fitness value greater than zero are considered extinct. If

the parent population is diminished, the genetic algorithm generates an equally reduced popu-

lation of successors. However, the population is automatically filled up with newly generated

swarm grammars. This mechanism counterbalances the negative influence the genetic opera-

tors can exercise due to incomputable rule sets.

82

5.1.2 Fitness evaluation

At the beginning of a simulation all M swarm agents1 of a swarm grammar are expressed and

initialized around the center of the virtual space (up to 10 units in x and y direction). Close

by, at the bottom center of the pre-defined shape, at coordinates (5, 5, 0)T , a template appears

hinting at an ideal spot for construction (Figure 5.1(a)). For a specified period of simulated

time ∆tsim = 8sec the swarm agents coordinate, build and reproduce. Then the construction

process is stopped, all data is written into a file and the next swarm grammar is computed. The

fitness is evaluated based on the goals to limit computational and constructional outgrowth and

to promote production, diversity and collaboration. We will explore these constraints in more

detail in the following sections and then propose an according fitness function.

Figure 5.1: (a) Initial simulation state: 5 agents (polygons) are randomly placed in the vicinity
of a template (cube). (b) Emerging structures are compared against this pre-defined shape
consisting of 103 small cubes.

Preventing escalation

Uncontrolled agent reproduction can quickly lead to an exponentially growing demand for

computing resources. In order to avoid such an excess of resource usage, a simulation process

taking longer than 100 real seconds is terminated and is not considered for further evolution.

Additionally, the actual computing time treal for a swarm grammar is stored as a variable

1For our experiments M = 5.

83

in order to determine a specimen’s fitness. On the one hand a certain degree of complexity

in the emerging structures is desirable. On the other hand an outgrowth of (computational)

complexity has to be avoided.

The same idea is realized when the swarm construction is compared against a pre-defined

shape at the end of the simulation: constructions within a certain range of the target template

are rewarded, whereas outgrowing the pre-defined limits is unproductive. Hereby, as in [176],

the pre-defined shape consists of smaller cubes with edge size 1.0 (Figure 5.1(b)). So at the

end of the simulation, at tsim = 8, we determine the ratio rp between the number of these cubes

that are penetrated by construction elements versus the total number of cubes comprised by the

pre-defined shape.

Adding the ratio rp to a swarm grammar’s fitness value rewards the swarm’s productivity

but only within certain boundaries. From a different perspective, it promotes constructions

that retrace the provided pre-defined shape. Independently of the pre-defined shape, the total

number nc of construction elements that were deployed during the whole simulation process

can be utilized to further assess productivity and to limit the extent of construction as well.

Promoting diversity

Since the construction patterns of individual swarm agents may vary, a broad diversity in con-

structions can be expected, that are built by a large number of different swarm agents. Even a

homogeneous set of swarm agents can achieve greater diversity than a single swarm individual,

as (1) the agents can influence each other’s behavior, and (2) the same construction processes

can be conducted in parallel. We express these observations numerically by ra, the ratio of dif-

ferent agent types that are activated throughout the course of a simulation to the total number

of available agent genotypes, and by ma, the number of agent individuals that were registered

during the simulation at one point or another.

Whenever different types of construction elements (rods, layers, bodies) are employed, an

84

increase in structural diversity can be expected. As a consequence, the ratio rc of employed

construction element types that are deployed during the simulation to the number of available

types is also considered for fitness computation.

Fostering collaboration

As an alternative to the deployment of construction elements, swarm agents may drop tem-

plates that do not contribute to the construction and last for a short period of time only (for 20

iterations in the presented simulations). Consequently, time-critical signals can be propagated

through templates, thus promoting collaboration among the swarm agents. We therefore also

measure the ratio rt of created templates to those that actually trigger a behavioral rule. Again,

the value stored in the constant rt results from counting and integrating occurrences of the ob-

served phenomena throughout the course of the simulation, i.e. between the beginning of the

simulation at tstartsim = 0 and its end at tendsim = 8 simulated seconds.

Swarm interaction is based on each agent’s awareness of other agents. Therefore, we com-

pute the ratio of agents that see each other to the total number of agents at each computational

step. This value is averaged over the course of the simulation and assigned to the variable

rn. For larger rn the swarm agents stick together, whereas smaller rn values reveal a very

loose flight pattern—both of these extreme situations render collaboration difficult. For in-

stance, a swarm grammar with rn = 0.87 might form a clump as seen in Figure 5.2(a), whereas

rn = 0.08 can be an indication for uncoordinated growth as seen in Figure 5.2(b). Further stud-

ies on the course of neighborhood relations during swarm simulations are described in Chapter

6.

Proposed fitness evaluation

The factors explained above are taken into consideration by the following fitness assignment

for a swarm grammar, fSG. The terms gn, gc and ga transform the corresponding variables to

normalized values between 0.0 and 1.0 according to their semantics: A neighborhood ratio not

85

Figure 5.2: Neighborhood perception rn during the construction process can sometimes be
linked to the emerging structures. (a) A very compact structure emerges with rn = 0.87. (b)
Swarm agents drift away from each other, which yields a low perception rate rn = 0.08.

too close to 0.0 or 1.0 is presumably beneficial. Reasonable amounts of expressed agents and

placed construction elements are contributing to the fitness as well, especially, if these efforts

do not overly extend the computation time treal. We therefore arrive at the following fitness

assignment of a swarm grammar which is used in our experiments.

fSG := rp + ra + rc + rt + gn +
gc + ga√

max(treal, 1)

gn := sin(π · rn)

gc := sin(π · 0.005 ·min(nc, 200))

ga := sin(π · 0.005 ·min(ma, 200))

5.2 First results of bred SG architecture

A successful search for architectural idea models heavily depends on the effectiveness of the

genetic algorithm, especially on the crossover operator and on the fitness evaluation. Therefore,

we first discuss our findings about the influence of the operator and fitness function on the

86

resulting architectural constructions, before a variety of phenotypes is presented and analyzed.

5.2.1 Fitness evolution and crossover points

Figure 5.3 depicts representative graphs of the fitness evolution in two independent experi-

ments. In the first experiment we apply a crossover operator c1 on rules and sets of flocking

parameters only. Based on the components of a swarm grammar system as depicted in Figure

5.4(a), c1(i, j) exchanges the genes Cx and Rz
y among two selected swarm grammars SGi and

SGj. In the second experiment each of the swarm grammars’ M agents is considered a gene

for recombination (crossover operator c2). Referring to Figure 5.4(a), c2(i, j) exchanges the

modules Ax only. The number of agents in two SGs as well as the number of rules of two

agents might vary. In this case, instead of an even exchange of genetic material, a one-sided

transfer from the specimen with the greater number of genes takes place. The average and

the maximum fitness values of each generation are shown in the graphs avg c1 and max c1 in

regards to c1, and in avg c2 and max c2 in regards to c2, respectively.

0 10 20 30 40

1

1.5

2

2.5

3

generation

f

max_c2
max_c1

avg_c2

avg_c1

Figure 5.3: Fitness evolution in two experiments implementing different crossover operators.
The upper graphs represent the maximal fitnesses achieved in each generation, whereas the
lower graphs depict the average fitnesses of each generation.

Elitism ensures that the best individuals are transferred unchanged into the next generation.

87

...

<RULE>

</RULE>

...

< CONFIGURATION >

< /CONFIGURATION >

<AGENT>

...

<RULE>

</RULE>

...

</AGENT>

...

<AGENT>

</AGENT>

...

A0

C0

SG0

An

R 0
0

R 0
m

< CONFIGURATION >

< /CONFIGURATION >

timers 24 70 98 247 224
construction-color 0.4 0.4 0.3
flocking-neighborhoodradius 5.4
flocking-neighborhoodangle 2.0
flocking-neighborhoodmindist 2.5
flocking-alignment 0.5
flocking-cohesion 0.5
flocking-separation 0.3
flocking-center 0.6
flocking-random 1.0
flocking-maxvelocity 0.5
flocking-maxacceleration 1.7

<RULE>

</RULE>

</HEAD>

</BODY>

<HEAD>

<BODY>

Agent

Reproduction E

Reproduction A B

(a) (b) (c)

Figure 5.4: (a) The modules of a generic SG system, SG0, comprising M0 = n + 1 agents,
A0...An, each defined by a configuration module, C0...Cn, and of a set of behavioral rules,
e.g. A0 has m rules R0

0...R
m
0 . (b) The configuration of the operative agent that wraps rods

around the skeletal structure in Figure 5.10. (c) The spawning rule to delegate construction,
employed in Figure 5.10.

Noise in the sequence of maximum fitness values (max c1 and max c2) is due to randomness

in the simulations. As shown, max c1 usually rises slower but does not differ much from

max c2. The development of average fitness values is of particular interest. The tendency of

avg c1 to stay considerably below avg c2 is not a coincidence. If only agents of relatively

successful swarm grammars are exchanged, the offspring’s success mainly depends on the

agent interaction encoded in their behavioral rules. Underachievement and thereby extinction

can happen, but is less frequent than with recombination working on the building blocks of the

agents’ genotypes. Especially the exchange of behavioral rules can lead to a swarm grammar’s

quick extinction. As soon as the agents reproduce themselves too frequently, the computing

88

time rises and can easily exceed the maximum allowed timeframe. While the average fitness

of the crossover on agents achieves a better development, the other crossover operator leads to

a population of much greater diversity. On the one hand, the recombination possibilities are

much greater when genetic information on the agent behavior level is considered. On the other

hand, the high extinction rate allows new genotypes to enrich the gene pool.

In our experiments certain fitness properties were obtained faster than others. rp, gn, gc and

ga had fast and great impact on fSG and, consequently, on the evolutionary development. We

were not able to promote rising values for ra, and rc which mostly exhibited erratic changes, or

for rt which did not contribute at all. Consequently, the following, simplified fitness assignment

might have sufficed to breed the presented examples.

f simple
SG := rp + gn +

gc + ga√
max(t, 1)

Also, since the ‘tasks‘ that correspond to the ineffective variables seem too difficult to be

learned instantly, either partial task fulfillment (e.g. first, the placement of a template and

second, the response) should receive a reward. Alternatively, the generation of behavioral rules

could be constrained, thereby reducing the search space for ‘useful‘ rules.

5.2.2 Architectural designs

The outlined experimental setup results in a wide variety of architectural designs, a selection

of which is presented in the following paragraphs. We differentiate between three structure

categories depending on the actual construction elements: rod, body or layer. This classifica-

tion schema concurs with actual architectural categories [102]. Additionally, we introduce a

category for swirly architectural idea models. Figure 5.5 displays an architectural model that

we did not want to assign to any specific class of models, as it shows an example that integrates

all basic construction elements equally well.

89

Figure 5.5: An architectural idea model built with equal presence of all three basic construction
elements.

The discussion of the examples underlines that the mapping from a swarm grammar geno-

type to the corresponding structure is not trivial. The provided characteristic measures drive

the evolutionary process, yet one can hardly infer specific architectural categories from these

measures, as we will demonstrate. The presented architectural models are created by swarm

grammar systems that roughly share the following percentages of different kinds of rule con-

ditions to trigger construction, reproduction and communication:

• 44% unconditional,

• 18% probabilistic,

• 15% on template sight,

• 14% on agent sight,

• 10% timers.

The presented swarm grammars’ tracing success value rp and neighborhood perception rn are

90

listed in Table 5.1.

Model rp rn Model rp rn

Fig. 5.6(a) 0.89 0.16 Fig. 5.8(a) 0.77 0.51
Fig. 5.6(b) 0.59 0.50 Fig. 5.8(b) 0.71 0.30
Fig. 5.6(c) 0.98 0.41 Fig. 5.8(c) 0.85 0.54
Fig. 5.6(d) 0.19 0.43 Fig. 5.8(d) 0.53 0.19
Fig. 5.7(a) 0.30 0.28 Fig. 5.9 0.81 0.35
Fig. 5.7(b) 0.32 0.005 Fig. 5.10 0.55 0.52
Fig. 5.7(c) 0.80 0.10 Fig. 5.11 0.89 0.64
Fig. 5.7(d) 0.75 0.16

Table 5.1: Characteristic values of the presented swarm grammar architectures.

Rod architectures

Figure 5.6 shows four examples of constructions in which rods dominate their visual character.

In fact, the structure depicted in Figure 5.6(c) only comprises about 60 rods, a mere 3% of

the employed construction elements. The remaining three architectures, Figure 5.6 (a), (b) and

(d), however, are based on 50% to 60% rods. Investigation of the genotypes reveals that the

rod-architecture swarms’ behaviors are not synchronized through timer conditions. Otherwise,

however, they comply with the general behavioral conditions outlined above.

The four phenotypes displayed in Figure 5.6 show diversity. Figure 5.6(a) exhibits three

completely different segments, that were grown from right to left. The first segment does not

only mix cubic construction elements and elongated rods, but also mixes two colors. The

second one resembles a spiky armor, and the third segment looks like a pile of sheets. The

continuous development of many of the presented swarm grammar architectures aligns the

lineage of morphogenesis and reproduction of swarm grammar individuals with sequentially

arranged construction elements. The analogous, linear emergence of the architectural model in

Figure 5.6(b) is again expressed in three segments. From the bottom-left of the image a lattice

tail loosely connects to the main part of the model. From there on, rods are laid out horizontally

91

resembling stairs that lead to the top of an impenetrable spherical heap of rods. Figure 5.6(c)

shows a multifarious construction. Cubic elements are arranged at the bottom and the top.

They are interconnected with a densely packed, dynamically shaped hose. Rods are floating in

a wave-like fashion around the model’s peak. The model in Figure 5.6(d) embodies the swarm

dynamics of the construction process. The movements of the flocks of swarm agents create

the impression of dynamic parts. This vivid impression is supported by the rough looking

combination of layers and rod elements.

Figure 5.6: Rod-based architectural idea models.

Body architectures

Figure 5.7 presents architectural idea models that are mainly assembled of (cubic) body con-

struction elements. In fact, their share of all utilized construction elements varies between 30%

and 50%. Simple as it might appear, the construction in Figure 5.7(a) achieves a very good ap-

92

proximation of the pre-defined shape (Table 5.1) and grows an extended set of bodies and rods

on top of the bottom-up sequence of layered elements. The second example, Figure 5.7(b), is

distinct by its sparse use of different construction elements. An interplay of flocking swarm

agents is obviously not required for the displayed model, as an extremely short perception ra-

dius of 0.6 units (maximally 10.0) keeps the swarm agents’ neighborhood perception very low

(Table 5.1). Figure 5.7(c) presents a futuristic design that emerges through three interwoven

construction mechanisms. (1) Cubic body elements form the main part of the model. (2) Layers

flank the main part along the entire edge length. (3) Both layers and cubic body parts are rising

in tandem to complete the construction with an elevated, inclined platform. The construction

rule shown in Figure 3.9 belongs to an agent involved in the construction of Figure 5.7(c). In

fact, another rule makes the same agent differentiate upon sight of a body construction. The

last instance of body-based architectures is shown in Figure 5.7(d). Here, a dynamic character

is introduced into the otherwise rather strict body architectures as seen in Figure 5.7(a), (b) and

(c).

Layer architectures

Figure 5.8 displays four tower constructions that are coined by the employment of layer con-

struction elements. In fact, Figure 5.8(c) only utilizes 5 layers that can be spotted at the bent,

the remaining 99.95% of the model consist of rods and body construction elements. Figure

5.8(a) and (b) look very similar. Yet, they originated from completely independent experi-

ments. Their characteristic values, too, resemble each other, except for the neighborhood ratio

rn (Table 5.1). Figures 5.8(a) and (b) consist of 25% and 17% layers, respectively. During

both construction processes, agents transform/reproduce 15 times. Their visual resemblance is

striking: From the bottom a rather rigid and straight stem is drawn upwards for about 3/4th

of the total height. Then, body construction elements rise to a podium that is ornamented by

several rods. During the construction of Figure 5.8(d), agents reproduce 76 times. The increas-

93

Figure 5.7: (Cubic) bodies coin the character of these architectural idea models.

ing number of identical agents steadily widens the diameter of the construction (67% layers).

The interplay of the swarms results in a rhythmic construction pattern that gains momentum

towards the model’s peak.

Swirly architectures

Figure 5.9 depicts an architectural idea model that is composed of several interwoven ripples

of layer constructions. A homogeneous swarm of five individuals swirls around a declining

path while dropping layers and rods. At the bottom (Figure 5.9(a)), two flocks are gaining

distance, thereby splitting the construction. The resulting construction receives good credit

for the approximation of the pre-defined shape and proves that a relatively low neighborhood

ratio rn = 0.35 may very well lead to an intriguing, vivid swarm architecture (Table 5.1). The

94

Figure 5.8: These tower architectures are mainly assembled of layer construction elements.

skeletal structure of Figure 5.10 is assembled of rods and cubic construction elements. Several

swarm individuals wrap around and cement an inner construction with waves of rods. Crucial

for this interplay is a probability-driven reproduction of the ‘foremen‘ and their differentiation

into mere operative swarm individuals that do nothing but place construction elements. The

emergence of a tight flocking pattern also strongly influenced this outcome. Figure 5.4(b) de-

picts the whole set of flocking parameters that determine the operative agent’s flight. Cohesion

and alignment are forces to keep the agents orderly together. When combined with a tendency

for separation and randomness, the bulge formations can emerge. Figure 5.11 displays a very

complex swarm grammar phenotype: During the construction process agents spawn 725 times

which might have led to the long computation time of treal = 63.3sec. During the inter-

play of the expressed swarm individuals, one of them is responsible for the reproduction and

95

differentiation—the corresponding behavioral rule is displayed in Figure 5.4(c). One individ-

ual only places rods, another one only layers. A fourth involved individual places a rod, a cube

and a layer construction element all at once but with a very low probability p = 0.2.

Figure 5.9: A swirly swarm architecture from different perspectives: (a) front view, (b) side
view, (c) top view.

96

Figure 5.10: A swirly swarm architecture from different perspectives: (a) side view (b) front
view, (c) top view.

Figure 5.11: A swirly swarm architecture from different perspectives: (a) from a 45◦ angle, (b)
side view, (c) top view.

97

5.3 Ecological features of swarm constructions

The presented architectural idea models demonstrate how biological construction processes

can be adopted to create nature inspired architectural models [103, 104]. As we will explain

in the following paragraphs, the outlined bio-inspired approach inherently promotes organic

aesthetics, produces individual solutions for specific environments and offers dynamic and

diverse designs.

The architect David Pearson claims that the predominance of rectangular, cubic elements,

the emphasis of ‘the straight line‘ is a relic of the industrial revolution and not desirable. In-

stead, an organic style with ‘free-flowing curves‘ should be favored which is supported by

modern construction processes and materials [105]. Numerous local interactions of swarm

grammar individuals realize this aesthetic demand. Especially Figures 5.9 to 5.11 bristle with

round shapes, ripples of construction elements and harmonically interwoven structures.

Modern architecture needs to be integrated into the environment, the ‘site-specific con-

text‘ has to be taken into account [103]. The swarm-driven construction approach responds to

this requirement on two levels. On the one hand, swarm individuals are aware of their envi-

ronment and act accordingly. Through this stigmergic mechanism the presented constructions

emerged. On the other hand, artificial evolution of constructive swarms can be utilized to opti-

mize the constructions in regards to waste water disposal, energy efficiency and other aspects

of ecological and economic performance [106]. Therefore, it is necessary to integrate supple-

mentary software modules that evaluate these features of performance [107]. In addition to

swarm heterogeneity and collaboration, ecological performance would direct the evolution of

swarm-built architectures.

98

Chapter 6

Swarm complexity

The measures to promote diversity, productivity and collaboration outlined in the last chapter

are favorable starting points to evolve complex swarm activities and emerging SG structures.

Complex systems in nature usually comprise large numbers of interacting units, as for instance

immune system cells that swarm in our bodies to fight off pathogens and remove damaged

cells [181]. However, it already takes great effort to create and analyze stochastic models of

only a few interacting units [182].

Numerical experiments have been playing an increasingly important role in the investiga-

tion of complex systems [183]. In order to build numerical models of complex systems, it is

necessary to identify those features of natural systems that are crucial for the emergence of

the phenomena of interest [11]. In particular, complex patterns that appear in natural systems,

form in space and unfold over time, have been reproduced in models built from large sets of

computational units that change their states in accordance with their local neighborhoods. Cel-

lular automata [135] and random boolean networks [111] are examples of such models, both

of which are outlined in Chapter 2 on related work.

Like in natural swarms—such as bird flocks or fish schools—, the neighborhoods of arti-

ficial swarm individuals change constantly and depend on preceding interactions1. Therefore,

the dynamics of a swarm can be measured as the fluctuations in perceived neighbors. Based

on this approach we are able to characterize the dynamics of boid swarms that exhibit various

flocking formations. Hereby, we also identify phases and phase transitions of a boid system,

including limit cycles and steady states.

1In [184], we demonstrate how the notion of artificial swarms as highly dynamic complex network systems
can be exploited to develop novel, engaging gaming concepts.

99

In order to capture the formation of neighborhood relations in swarms, we measure the

numbers of neighbors for every individual at each simulated time step, within a particular

neighborhood radius. We show examples of neighborhood evolutions and discuss these through

swarms that exhibit specific flocking formations. We demonstrate that switching and oscillat-

ing neighborhood formations can be achieved in homogeneous swarm systems whose flight is

solely regulated by a linearly scaled acceleration of the individuals.

Agent states and neighborhood relations are inseparable in swarm systems. Vice-versa,

we evolve boid configurations to approximate characteristic neighborhood functions. Here

we show that non-linear and oscillating neighborhood developments can emerge in spatially

organized homogeneous swarms that solely rely on linearly scaled flight acceleration based on

repulsion and attraction.

As in studies of complex pattern formations in two dimensional CA [135], our experimental

data suggests that:

1. Varying initial conditions and noise influence the evolution of boid flocking patterns

locally. The general characteristics of the emerging patterns, however, are mainly based

on the flocking parameters of the swarm.

2. Different swarm configurations can lead to very different pattern formations.

3. Chaotic behavior—unexpected, chance-based phase transitions—can occur in systems

that initially show orderly, periodic patterns.

6.1 Swarms as a model of complexity

Once determined, the neighborhood relations between the units of a CA or RBN remain fixed.

One may assume, however, that in many natural systems different forces draw and push the

involved units so that they change their positions, as is observed in bird flocks, fish schools, ant

100

colonies or cell development. Thereby, of course, the neighborhoods of the units do not remain

static.

Exactly this idea is captured in the ‘swarm metaphor’. Large sets of swarm agents, attract

and repel each other. The neighborly influence felt by one individual determines its action for

the next time step. A swarm agent changes its velocity and position, thereby gaining a new

neighborhood perspective and, at the same time, altering its neighbors’ perspectives. Con-

sequently, a feedback loop of actions and reactions emerges. Unlike in CA and RBN, state

changes directly impact neighborhood bonds. We argue that this feedback loop between agents

and their changing neighbor arrangements is the key feature to model spatially organized sys-

tems, since locality plays a crucial role for any effective interaction.

The neighborhood relations that drive the simple boids model outlined in Section 2.6.2

depend on the sight, the orientation and the position of the seeing individual, on the position

of the potentially perceived individual, as well as on time.2 The emerging causal chain can be

expressed as follows (Fig. 6.1): The actions of a swarm agent i change its state which influences

all those agents that are seeing i. At the same time i’s new state results in the perception of a

certain set of neighbors. These neighbors influence i’s actions and the feedback loop starts all

over again.

It is worthwhile noting that the system state and the neighborhood configuration are in-

separable in the outlined swarm model. As a consequence, the observation of alterations of

neighborhoods can be utilized to describe the system dynamics. Therefore, we measure the

numbers of perceived neighbors n(t) = |Ni(t)| of each swarm agent i at any given point in

(simulated) time t. We characterize a single state of the whole swarm by the average neigh-

bor value of all M swarm individuals. That is, we define the time-dependent neighborhood

function for a swarm with M agents as

2All vectors ~ai, ~va, ~vc, ~vs, ~vw and sets Si and Ni are time-dependent, but we will not denote the time variable
explicitly.

101

Perception

Swarm
 Agent i

State

Action
S P

S P

S P

S P

S P

S P

neighbors of iagents seeing i

Figure 6.1: The slim arrows in the upper box show the direction of influence between percep-
tion, action and state of a swarm agent i. The S-P tuples stand for the state and perception
modules of other agents that interact with i.

n̄(t) =
1

M

N∑
i=0

ni(t). (6.1)

Finally, the evolution of n̄(t) over the course of time helps to analyze and describe the

dynamics of the (swarm) system. Based on this approach we investigate various flocking for-

mations of boid swarms in the next section.

6.2 Analysis of flock formations

Jacob and Kwong have shown that diverse flocking behaviors of boids can be evolved with

different parameter sets for Equations 3.4 to 3.5 (Sections 2.6.2, 2.6.5 and 3.1). We utilize

four sets of flocking parameters from their work (Table 6.1) to analyze ‘choreographic‘ line

formations and figure-eight formations based on n̄(t). Two different swarm configurations

are provided for each formation type. The following analysis links several phases of swarm

interactions and the occurrences of desired formations to the development of the neighborhood

function n̄(t). The presented results are all produced by 50 swarm agents with a perception

102

radius l = 3.5 and viewing angle α = 2.0. As above, we normalize all n̄(t) values by the

number of active swarm agents.

Line formations
walign wcoh wsep wworld wrand maxaccel maxvel dmin

(i) 7 8 5 5 5 38 13 0.14
(ii) 7 8 4 10 4 40 9 0.01
Figure-eight formations

walign wcoh wsep wworld wrand maxaccel maxvel dmin
(i) 3 10 1 5 2 38 6 0.01
(ii) 5 10 2 12 1 35 6 0.34

Table 6.1: Evolved parameter sets for ‘choreographically‘ flocking swarms [83].

6.2.1 Line formations

Figure 6.2 shows the development of n̄(t) with the line formation parameters in row (i) of Table

6.1. The graph shows the average number of neighbors perceived by each agent over time. The

plot can be partitioned into five distinct phases. In phase I, the average neighborhood perception

n̄(t) is rising rapidly. Mainly the urge towards the world center ~w = (0, 0, 0)T accelerates the

initially stationary agents towards each other (Fig. 6.3(a) to (c)), ending up much closer than

before (Fig. 6.3(d)).

During cluster formation the agents gain momentum bypassing many other agents. This

leads to the decreasing average neighborhood perception in Phase II. As a result, several

smaller flocks emerge after these two initial phases (Figure 6.4). The cohesion urge is now

strong enough to keep subgroups of agents together that gather in the same vicinities (Fig.

6.4(a)). The alignment urge transforms these subgroups into flocks that exhibit increasingly

homogeneous flight patterns (Fig. 6.4(b)).

In phase III of Figure 6.2, a line formation emerges (Fig. 6.5(a)), yielding relatively small

values of n̄(t). Steadily, the agents are drawn closer to each other and n̄(t) increases accord-

103

0 2 4 6 8 10 12 14 16

0

0.1

0.2

0.3

0.4

t

n

I II III IV V

Figure 6.2: Developments of the average neighborhood perception n̄(t) matches several phases
of agent interactions and flock formations.

ingly. In phase IV a dense agglomeration of agents emerges at the head of the line formation

(Fig. 6.5(b)). Eventually, the line formation is destroyed and substituted by a tight cluster

formation (Fig. 6.5(c)). After reaching phase V, the flock remains in a quasi steady state that is

subject to only minor fluctuations (Fig. 6.5(d)).

Changing the simulation to the line formation (ii) parameters in Table 6.1 results in in-

creased randomness of the agents’ acceleration. The swarm looses its tight, cohesive con-

straints and thereby allows for the sporadic escape of agents. Figure 6.6 shows the correspond-

ing neighborhood function. The neighbors of a fleeing agent may try to catch up and break out

of the cluster as well. Consequently, the swarm’s flight is dominated by tight cluster forma-

tions but is frequently interrupted by line formations (Figure 6.7). Another consequence is that

single agents or even whole flocks can leave the parent flock, so that eventually all agents are

dispersed and unable to interact.

104

Figure 6.3: In phase I initially stationary agents are drawn together by the urge towards the
world center.

Figure 6.4: In phase II subgroups align as separate flock formations.

105

Figure 6.5: (a) Phase III: agents of single flocks follow each other in a line formation. (b) Phase
IV: agents gather into dense clusters at the heads of the line formations. (c) and (d) Phase V: a
tight cluster has formed that is robust enough against sporadic attempts of separation.

106

Figure 6.6: In the simulation of line formation (ii) of Table 1 agents break out of tightly formed
clusters and take the lead of long line formations. During such events n̄(t) drops temporarily
(e.g. at t = 25 and t = 32). Frequently the line formations break up (as in Fig. 6.5) and the
parting flocks do not interact anymore (t = 50). As a consequence, n̄(t) reaches a value of
zero at about t = 400.

Figure 6.7: An agent cluster is breaking up into two line formations, one urging upwards, one
towards the floor.

107

6.2.2 Figure-eight formations

In analogy to the discussed line formation examples, we investigate two boid configurations

that exhibit figure-eight flight patterns with respect to n̄(t). As we can see in Figure 6.8, pa-

rameter configuration (i) from Table 6.1 reaches a steady state, whereas with setting (ii) agents

repeatedly wander through different phases to eventually spread all agents far enough from

each other to prevent further interaction—exactly as in line formation (ii) and in Figure 6.6.

Configuration (i) rapidly swings into a figure-eight formation traced by small clusters of six to

ten agents (Fig. 6.9(b)). Here, the swarm constantly traverses through a limit cycle of global

states as indicated by the fast oscillating values of n̄(t) (Fig. 6.8(i)). In comparison to the

line formation experiments, the oscillation of n̄(t) is characteristic for figure-eight formations.

Furthermore, for configuration (i) the oscillation reached at about t = 20 marks a quasi steady

state. High values of n̄(t) correspond with a high value of perceived neighbors. Therefore, we

suggest that the oscillation occurs because alternating numbers of swarm individuals meet at

the centering knot of the figure-eight formation.

In figure-eight configuration (ii) the neighborhood perception converges towards zero, and

the subgroups of swarm agents may break away during intermediary line formations. This is

similar to the second line formation experiment. Line formations, such as illustrated in Fig-

ure 6.10(a) are reflected by the steep drops of n̄(t) in Figure 6.8(ii). In general, line formations

fold back quickly into figure-eight formations, as is shown in Figure 6.10(b). In contrast to the

line experiments, the difference between a configuration that quickly results in a stable equilib-

rium and a swarm that exhibits long periods of drastic changes cannot be directly inferred from

the according flocking parameters in Table 6.1. We assume that in complex figure-eight flight

patterns it becomes more difficult to identify a parameter, such as the random weight rrand in

Equation 3.5, as crucial for spontaneous behaviors.

108

0 20 40 60 80 100 t
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(i)

(ii)

n

Figure 6.8: The development of n̄(t) of figure-eight formations (i) and (ii) based on the param-
eter sets in Table 6.1.

Figure 6.9: (a) Agents in figure-eight formation. (b) Tight agent flocks (of six to ten agents) in
figure-eight formation.

109

Figure 6.10: A line formation is about to collapse into a figure-eight pattern.

110

6.3 Reverse engineering of n̄(t)

The examples in the previous section demonstrate how measuring the neighborhood dynamics

over time can help to describe and analyze emergent flocking formations. Now, we utilize this

association to approximate neighborhood dynamics as they might contribute to the coordina-

tion of naturally occurring phenomena, such as biological switches and clocks or timers. The

research objective that we address is phrased by the following questions:

“Could an average neighbourhood function that follows a step function result in a

swarm that exhibits a bi-state, switch-like behavior?”3

And, secondly, “Could an average neighborhood function that follows a sinusoidal function

result in a swarm that exhibits an oscillating flocking behavior?”. This section explores both

these questions by evolving swarms to follow according average neighborhood functions.

The neighborhood value ni(t) of a single agent may change rapidly, remain fixed or oscil-

late. It is also easy to discover a whole flock of agents entering an equilibrium of a specific

average neighbor value n̄(t). The results in the previous section also show that even a whole

swarm can change dynamically, or, put differently, can follow specific evolutions of n̄(t).

If it was not for its contextual evolution, the average neighborhood n̄(t) would mainly

characterize the concurrent spread, or density, of boid flocks, thereby corresponding much to

molecular concentrations. In fact, neighborhood fluctuations indicate changes in the structure

of swarms. Immediately, the question arises which patterns of movement could one expect

when looking at evolutions of n̄(t) that correspond to the development of molecular concen-

trations in biological measurements.4

Even though the expression of genes happens stochastically, the levels of expression can

differ greatly which promotes the idea of a genetic switch [10]. By the approximation of a step
3This motivational question was suggested by Una-May O’Reilly in the course of the evaluation of my sub-

mitted dissertation.
4Such measured molecular concentrations may come from microarray experiments that approximately capture

the number of (reporter) proteins over time.

111

function for n̄(t), we intend to show that even a homogeneous swarm could exhibit bi-stable

switching behavior. Oscillations occur in natural systems as timers, such as circadian clocks.

As a second option, we therefore explore which swarm behaviors can be evolved that follow

a sinusoidal neighborhood function. For both endeavors we utilize a genetic algorithm that

operates on populations of swarms as described in the following paragraphs.

6.3.1 Evolutionary experiments

A homogeneous boid swarm, consisting of agents that share the same control parameters, is

represented by a genotype vector~b = (walign, wcoh, wsep, wworld, wrand,maxvel,maxaccel, d, α)T .

We also want to modify the starting positions, initial accelerations and initial velocities of

the swarm agents: init0, init1, ..., initM . The extended swarm genotype is therefore ḡ =

(~b, init0, init1, ..., initM).

In the following experiments we provide a desired target function x(t) for n̄(t) and reward

its approximation with a fitness value f = 1/
∑40

t=1 |n̄(t)− x(t)|. We rely on the genetic oper-

ators of fitness proportionate selection, incremental mutation and multi-point crossover on all

numeric values. In fact, the applied crossover operator c3 is in line with c1 and c2 that are in-

troduced in Section 5.2.1. During the investigations of complex flocking formations, however,

one homogeneous flock of boids is solely determined by one configuration module, Cboid. The

values stored in this configuration module are exemplarily depicted in Figure 5.4(b) and they

are the genes exchanged between pairs of flock specimen by operator c3. The values were rep-

resented as 64Bit floating point numbers, whereas each number was treated as a gene during

the recombination processes. A population counts 30 swarms, with each swarm consisting of

30 agents. The genetic algorithm was run up to 300 generations.

112

6.3.2 Step function

As the computation of the genotype was limited to 40 simulated seconds, we decided to trigger

the switch at about half of the overall time-frame. A difference of 0.5 units in a system with

values n̄(t) ∈ [0; 1) denotes an obvious leap, whereas a lower boundary n̄min = 0.25 is large

enough to allow for further swarm interactions (as opposed to n̄min = 0.0 that rules out the

possibility for local interactions).

x(t) =


0.25 t < 22

0.75 t ≥ 22

Figure 6.11 displays the step function approximation of a boid configuration that appears

after 200 generations of the outlined genetic algorithm. In Table 6.2 we list the parameters

of the best evolved swarm genotype, which reveals two surprising values: wsep = 1.0 and

maxvel = 0.0. In fact, the velocity of the swarm individuals is greater than zero—the integra-

tion step of the simulation increases the velocity in accordance with the provided acceleration

~a that is limited to maxaccel = 12.15. The limitation of maxvel = 0.0 means that the agent is

stopped after each iteration, resulting in a very small velocity value, yet ensuring the orienta-

tion and alignment according to its flocking urges. As a consequence, starting from their initial

positions, the agents are slowly converging towards each other—nicely timed with the target

function. The large weight for the separation urge wsep = 1.0 prevents the agents from getting

too close and exceeding the target value of x = 0.75. The swarm is trained to approximate the

step function for 40 simulated seconds. The flight behavior of the swarm after 40 seconds is

not taken into account by the fitness function. For that reason, the flight parameters are deli-

cately balanced within this time frame. In the given example the swarm reaches an equilibrium

shortly afterwards, at about 60 seconds. At this point in time the flock is clustered at the center

of the simulation. As the individuals still try to avoid each other and because of a relatively

great random impact on their orientation, they frequently look past each other causing n̄(t) to

113

drop into a quasi steady state at about tqs ≈ 62 and n̄(t) ≈ 0.37, with t > tqs.

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

t

n

Figure 6.11: A neighborhood function n̄(t) of a boid configuration, bred by an evolutionary
algorithm, approximates a step function as x̄(t). Afterwards, outside the evaluation window
the swarm drops into an equilibrium with n̄(t) ∈ [0.35; 0.45].

Boid configuration for n̄(t) step function approximation
walign wcoh wsep wworld wrand maxaccel maxvel dmin
0.37 0.86 1.0 0.44 0.48 12.15 0.0 4.89

Table 6.2: Evolved swarm parameters that result in the neighborhood function of Figure 6.11,
implementing a switch in n̄(t) (α = 2.09, d = 9.32).

6.3.3 Sine function

Two periods of a sine function are provided as target function x(t) for time frame of 40 simu-

lated seconds. As in the step function approximation, n̄(t) is not forced to drop below 0.25 to

guarantee a minimal space for interactions.

x(t) = sin(4π ∗ t/40.0) ∗ 0.25 + 0.5

114

Figure 6.12 shows the neighborhood function n̄(t) for the evolved swarm configuration as

listed in Table 6.3. Eventually, at t = 1244 in Figure 6.13, the oscillation ends; this is when the

agents form a tight cluster orbiting around the world center ~w.

Since complex interactions render it difficult to identify certain flocking patterns, we acti-

vated motion blurring to better capture the pattern formations of the swarm. We determined

that the oscillation happens as the biggest flock repeatedly expands (Figure 6.14) and contracts

(Figure 6.15). Leaps from a plateau to a local maximum, as seen at t = 100 in Figure 6.12,

occur when formerly separated flocks rejoin (Figure 6.16). In Figure 6.17 several screenshots

with activated motion blur illustrate intermediary flight formations.

0 20 40 60 80 100 120 t
0

0.2

0.4

0.6

0.8

n

Figure 6.12: A boid configuration bred by an evolutionary algorithm approximates two periods
of a sinusoidal neighborhood function. As shown, the oscillations sustain even afterwards.

Boid configuration for n̄(t) sine approximation
walign wcoh wsep wworld wrand maxaccel maxvel dmin
0.76 0.95 0.53 0.36 0.76 12.15 7.16 4.12

Table 6.3: Evolved swarm parameters that result in the neighborhood function n̄(t) of Fig-
ure 6.12. The corresponding swarms display oscillating behaviors (α = 2.64, d = 7.86).

115

0 200 400 600 800 1000 1200 t
0

0.2

0.4

0.6

0.8

n

Figure 6.13: After about 1200 simulated seconds the oscillating swarm transitions into a steady
state.

6.4 From investigations into the complex toward a new swarm model

Agent states and neighborhood relations are inseparable in swarm systems. Therefore, the

dynamics of a swarm can be measured as the fluctuations in perceived neighbors. Based on

this approach we are able to characterize the dynamics of boid swarms that exhibit various

flocking formations. Hereby, we also identify phases and phase transitions of the boid system,

including limit cycles and stead states.

Vice-versa, we evolve boid configurations to approximate characteristic neighborhood func-

tions. Here we show that non-linear and oscillating neighborhood developments can emerge in

spatially organized homogeneous swarms that solely rely on linearly scaled flight acceleration

based on repulsion and attraction.

As in studies of complex pattern formations in two dimensional CA [135], experimental

data suggests that (1) Varying initial conditions and noise influence the evolution of boid flock-

ing patterns locally. The general characteristics of the emerging patterns, however, are mainly

based on the flocking parameters of the swarm. (2) Different swarm configurations can lead

to very different pattern formations. (3) Chaotic behavior—unexpected, chance-based phase

116

Figure 6.14: The flock extends in two directions.

transitions—can occur in systems that initially show orderly, periodic patterns.

We published the results presented in this chapter in [7]. Therein, we also suggested the

creation of an abstract swarm model for further investigation into swarm complexity. The

envisioned model should maintain the link between state and neighborhood, but should be

reducible to any high-dimensional space. It should be desirable to find operators that comply

with the amalgamation of time and space, or respectively structure and state, without realization

of physics. With a generalized set of operators that change states and neighborhood relations

concurrently, a systematic classification of swarm dynamics might be possible. Thereby, we

hypothesized, swarms could become an important model for the dynamics of complex systems

in general. In the next chapter, we present our first attempt to realize this objective.

117

Figure 6.15: The previously extended flock from Figure 6.14 contracts again.

Figure 6.16: A second flock approaches and joins the other one.

118

Figure 6.17: Motion blurring renders some of the more complex flight patterns identifiable: (a)
Spherical formation, (b) a U-bent figure-eight, (c) and (d) extended figure-eights.

119

Chapter 7

Swarm graph grammars

Computational developmental models (CDM) have shed light on important phenomena in the

development of living organisms (Section 2.2). In artificial chemistries, sustainable, auto-

catalytic networks of interdependent molecules have emerged [111]. Stable structures resem-

bling the membranes of cells have been shown to evolve [48], and concepts for the development

of increasingly complex hierarchies of living structures have been presented [138] (Section

2.5.3). However, each step towards understanding the miracles of nature fosters our acknowl-

edgement of their incredible inherent complexities (Section 2.5).

The basis for complexity in CDMs lies in the interaction dynamics of their constituents. In

addition, the topologies of their constituents might change, thereby introducing another level

of dynamics (Section 2.5.2). The developmental swarm grammar system implements implicit

topological changes through a formal grammar and the individuals’ flocking behaviors [2].

In this chapter, we introduce swarm graph grammars (SGGs) that extend SGs by an explicit

topological, graphical representation of interaction processes. SGGs also unify the previously

independent encodings of parametric flocking behavior and rule-based agent activities (e.g.

reproduction and construction).

Section 7.1 details swarm graph grammars (SGGs) and their constituents, i.e. swarm in-

dividuals, graph grammatical rules, and an according SGG algorithm. Section 7.2 shows how

the SGG formalism is applied step by step to retrace and to extend the original swarm grammar

and the underlying boids model.

120

7.1 A swarm graph grammar system

A swarm graph grammar SGG = (Gen,Ξ,Gpred,Gperf , P) is a quintuple, where Gen contains

a set of genotypes for generating new swarm individuals. At the beginning of the simulation, a

set Ξ of axioms, in the form of initialization algorithms, is executed by first selecting and ex-

pressing a number of genotypes fromGen, and secondly, by assigning initial states to the newly

created individuals. For a homogeneous boid flock, for instance, Gen only has to comprise a

single genotype. Having created a sufficient number of boids based on this single genotype,

the axioms would assign each boid contextual information such as their initial location in the

simulation space and their initial velocities.

After the initialization routine (Algorithm 4), the main loop of the swarm graph grammar

algorithm is entered (Algorithm 5). The SGG algorithm maintains two graphs, Gpred ∈ Gpred

and Gperf ∈ Gperf , where the swarm individuals are represented as nodes, and where edges de-

note their interrelationships. Gpred represents the set of possible graphs of agents interconnected

through unary and binary predicative relations. Gperf hosts all possible graphs that impose per-

formance relations onto swarm individuals. Predicative and performance relations take one or

two swarm individuals as parameters. Relational chains among sets of swarm agents create

semantic topologies for global graph structures that describe the situational context, or respec-

tively, the activity in an SGG system. In fact, the alternating update of the graph instances

Gpred and Gpref based on the individual swarm agents’ behaviors drives the SGG simulation.

Algorithm 4 Initialization Routine
Require: Gen, Ξ
Ensure: added nodes to Gpred

express a number of swarm individuals relying on Gen
initialize expressed individuals in the simulation context
add the initialized individuals as nodes to Gpred

start the main loop

In order to compute Gpred and Gperf the following procedures are repeatedly carried out.

121

Algorithm 5 Main Loop
Require: Gpred, optional: P
Ensure: alternating computation of Gpred and Gperf

repeat
compute predicative graph Gpred

compute performance graph Gperf based on Gpred

apply order policy P to Gperf

execute ordered performance relations of Gperf

until simulation is terminated

First, predicates among the swarm individuals (si) are identified. For example, imagine the

situation in Figure 7.1. The binary neighbor predicate ν(si0, si1) states that si0 sees si1, as si1

sojourns within si0’s field of view. Secondly, the individuals react to their current (predicative)

situations through the application of a number of behavioral rules. These graph grammar rules

consist of a condition-querying head graph and a change-inducing body graph. If the topology

and the labels of the head graph’s constituents can be matched in the given situation, the rule

is applied. If a rule is applied, its body graph, which maintains references to the head’s node

matches and a number of performance relations, is incorporated in Gperf . An execution order

policy P can be applied, when the construction of Gperf is completed, i.e. when each swarm

individual has incorporated all the performance relations of all its applicable rules. This third

step of the main loop sorts the performance relations between pairs of individuals according to

P . In the fourth and last step of the main loop, the performance relations of Gperf are executed

in the given order. As a consequence, the swarm individuals obtain new states. Hence, when

the predicative graph Gpref is computed in the next iteration, different predicates may occur.

Detailed examples are provided in Section 7.2.

7.1.1 Swarm individuals

As outlined in Section 2.5.2, a broad agent definition is provided by the quadrupleAg =(Sit,Act,

Dat,fAg). Sit refers to the agent’s situation and describes what the agent could possibly per-

ceive. Act is the set of possible actions of the agent, whereas Dat describes the space of

122

boid boidν -

boid

ν

?

ν

@
@@

@
@@R

boid

(a) (b)
Figure 7.1: (a) Four boids and their respective fields of view. (b) Edges in the graph Gpred

indicate neighbor relations between two boids.

required internal data cells. fAg is the agent’s decision function which determines the next

action according to Sit and Act: fAg : Sit × Dat → Act. In the following paragraphs, this

agent definition is customized for an SGG agent or swarm individual (si).

Situation, Sit

Being part of the simulation, a swarm individual simay find itself situated within any subgraph

of Gpred. However, si cannot react to other individuals sii that it is not immediately related

to, i.e. without a predicative edge from itself to sii. Thus, we define Sit as a set of all those

subgraphs of a graph instanceGpred ∈ Gpref that include si, all predicative relations rel(si, sii)

and the corresponding nodes sii.

Although queries for subgraph isomorphisms are considered NP-complete [185], search-

ing for Sit in Gpred is trivial, as only immediate relations to swarm individuals are considered.

When querying the situation Sit in the attempt to match rule conditions, the problem size re-

mains considerably small. For deviating SGG implementations, we suggest non-deterministic

but efficient subgraph query methods as, for instance, provided through closure-trees [186].

Action, Act

Both predicative and the performing relations of a swarm individual are provided by its set of

possible actions Act. The implementation of these relations is decoupled from the graphical

123

representation scheme. Primarily, the above Algorithms 4 and 5 provide the structural frame-

work for process execution. On the second level, predicative and performance relations are

processed that only access Dat and Sit information provided by the involved agents1.

The terms predicative and performance relation underline the relational connections of

the involved agents and the meaning of the simulation graphs Gpred and Gperf : Contextual

interdependencies drive the agent interactions at each computational step. The connections of

individuals are described by graphs which may continuously change—the interwoven, ever-

changing web of temporary graph structures is a complex, dynamic network process. We

deploy predicative relations only to query the states of the involved individuals and to compute

and return a boolean value. Performance relations on the other hand may access and change

the situation and the internal data of one or both of the involved agents. Thus, performance

relations are responsible for any changes in the simulation. Of course, predicative relations

could initiate some side-effects on the simulation as well but, ideally, apart from temporary

values that are computed based on the predicative configuration of the system, any impact on

the simulation should stem from the realization and execution of performance relations.

Internal data, Dat

Three distinct kinds of information are stored as a subset of Dat: (1) The values of a swarm

individual’s relative state in the simulation, (2) its genotype, and (3) the state of expression of

the genotype and expressed data structures with accompanying values.

Part of a swarm individual’s genotype is a set of behavioral rules Bhvr which occupies

a special area in Dat as it ties the different model components together. Application of the

behavioral rules is the main computational step in a SGG system. It guides the computational

process from querying certain predicative relations to the execution of arrays of directives.

Figure 7.2 shows a rule for a boid agent boidref to update its acceleration depending on boid0.

1Our SGG implementations are written in Java. The core libraries of the prototyping framework processing
are used for threading, GUI and visualization [157].

124

boidref

boid0

ν

6

boidref

boid0

accelboid

6

-

Figure 7.2: The neighbor predicate ν is substituted by an acceleration performance accelboid.

Nodes with indices ref reference the instances that own the corresponding rules. We also

refer to these nodes as reference nodes. The given rule can be read as: If the reference node

has a neighbor boid0, it updates its state through accelboid in regard to boid0. The indices of the

nodes are embedded in the formalism of the rules to correlate matches of the rule’s head with

its body2. The interaction partners’ names, e.g. “boid”, are actually taken into consideration

when finding a node in Gpred to complement a rule’s head node. Classifying names provide

a shortcut to find relevant interaction partners in the simulation: Instead of testing relevant

predicates among all nodes, an individual might, for instance, only be responsive to nodes

labeled with “boid”. Generally, a node inGpred matches a rule node, if their names are identical

and if they share an identical set of relations with the reference node.

Behavioral rules also express removal and creation of an additional swarm individual or

particle. If a node occurs in the rule’s head, but not in its body, it will be removed. Numerous

swarm individuals could attempt to operate on the considered node simultaneously. However,

the removal of a node has absolute priority and renders other accessing attempts futile. Figure

7.3 displays a removal rule: Upon perception of si0 and si1, siref removes si0. At the same

time, si1 might also perceive si0 and attempt to change its state, e.g. its location. This attempt

would fail because removal has priority.

2A variable index in a rule node, e.g. boidi, represents any number of matching nodes inGpred. Consequently,
the edges from the reference node to such a variable node are hyper edges which allow to match subgraphs in
Gpred with arbitrary numbers of branches.

125

siref

si0

ν

6

si1

ν

�
�
�
�
�
��

siref

si1

-

Figure 7.3: Example rule: If the swarm individual siref sees two neighbors (predicate ν) si0
and si1, it removes one of them (si0).

Mutual exclusion does not arise when new nodes are introduced into the system. Syntac-

tically, such a case is covered by nodes appearing in a rule’s body that are not present in its

head—exactly the opposite of a removal rule. It is important to note that a new node needs to

be initialized by its ancestor. Thereby, it obtains a genotype, a state of expression resulting in

its initial phenotype and a clear state in the simulation. As the according initialization perfor-

mance determines the type, state and behavior of the new node, there is no a-priori distinction

between new nodes inGperf . For instance, they may become swarm individuals, static particles

or pheromones (Chapter 3).

The rules of an individual siref might not respond to all the implemented predicates. Only

those predicates have to be tested between siref and the other swarm individuals sii that are

relevant to siref .

7.1.2 Computational complexity

Computation overhead is minimized for predicate testing, if only relevant interaction partners

(by name) and relevant predicates are considered for each of the active nodes. An average

complexity of Θ(m·n·o) results fromm as the average number of relevant interaction partners,

n as the average number of relevant predicates and o as the number of active nodes in the

simulation. In the worst case, all nodes have to be tested among themselves with respect to all

126

p implemented predicates. Then, the complexity for predicate testing rises to O(o2 · p).

There are two features of the SGG algorithm that could be immediately utilized to improve

the runtime of a simulation. First, the computational effort for executing a relation might

be reduced by recycling intermediately computed results as, for instance, implemented for

neighborhood testing in [8]. Second, with a strict read-only policy for predicative relations,

computing the SGG simulation could be distributed to a parallel computing system with shared

memory. Synchronization would be required after each of the four steps in the main loop

(Algorithm 5).

7.2 SGG examples

In the previous section, SGGs were introduced as a graph-based, developmental multi-agent

model. SGGs do not qualify as a programming language, as they do not require the involved

relations to be implemented in any particular syntax. They present, however, a powerful, uni-

fying modeling framework. In this section we utilize SGGs to successively model boids, basic

swarm grammars and extended swarm grammars.

7.2.1 Boids with SGGs

For standard boid flocking [13], the sole genotype gboid ∈ Gen contains several weights for

flocking urges, parameters to determine a field of perception, as well as boundaries for the

maximal flight acceleration maxaccel and velocity maxvel. Ξ generates a homogeneous set of

swarm individuals that are initialized with a random position −→p and velocity −→v .

Having initialized the boid simulation, a first predicative graphGpred can be computed. Fig-

ure 7.1(a) visualizes the swarm individuals’ states, i.e. the swarm individuals’ relative locations

−→p , their orientations according to −→v and their parametrically determined perceptional fields.

Figure 7.1(b) shows Gpred with the only predicative relation ν among the swarm individuals.

127

ν(u, v) means that the location of v is within the perceptional field of u.

As the agent simulation proceeds with yielding the system’s detailed global state in Gpred,

the swarm individuals are prompted to act. Boids rely on two behavioral rules. The first rule is

depicted in Figure 7.4(a). It continuously updates a swarm individual’s position in accordance

with its velocity. The second rule, Figure 7.4(b), substitutes ν(u, v) by accelboid(u, v). The

latter relation considers the difference between u and v’s states, including their locations and

velocities, and accelerates u accordingly.

boidref

boidi

ν

6

boidref

boidi

accelboid

6

-

(a) (b)
Figure 7.4: (a) Unconditionally, the individual boidref repositions itself. (b) The reference
node updates its state dependent on any neighbor boidi.

In particular, accelboid(u, v) calculates an acceleration vector
−→
au for the individual u ac-

cording to the following equation:

−→
au = wualign(

−→
vv −

−→
vu) + (7.1)

wucoh(
−→
pv −

−→
pu) + (7.2)

wusep(
−→
vu ⊗ (−∠(

−→
vu,
−→
pv −

−→
pu))) + (7.3)

wurand||−→v r|| (7.4)

In analogy to the boids implementation of previous SG systems (Section 3.1.2), the weights

wux are encoded in u’s genotype. Term 7.1 is responsible for u’s alignment to v: The velocity

difference, and thereby the angle between the two individuals, is reduced. Term 7.2 keeps the

individuals together by decreasing their distance. In Term 7.3 u’s orientation is rotated, ⊗, by

128

its deflection vector from v, thus realizing an urge for separation. Eventually, Term 7.4 adds

an accordingly weighted, normalized random vector −→v r, resulting in some nondeterminism

in the boid’s flight. The calculated acceleration vector may not exceed the absolute value of

maxaccel. Furthermore, when accelboid is eventually enforced, the resulting velocity is kept at or

belowmaxvel. Note that different from previous boid implementations, the urges for separation

(Term 7.3) and cohesion (Term 7.2) are not simply diametrically exercising forces—instead,

separation effects a deflection of an agent. Thus, no differentiation between the perceptional

range d and the crowding constant dmin has to be made to switch the separation urge on or off.

Instead, the separation urge continuously impacts the agents’ flight like the other basic boid

urges alignment and cohesion.

In the following example, gboid provides the weights walign = 1.0, wcoh = 0.3, and wsep =

0.2, the parameters d = 50 and angle α = 2.0 for a conic field of perception, and the restraining

flight parameters maxvel = 5 and maxaccel = 15. In Figure 7.5(a) and (b) as well as in the

subsequent figures of SGG simulations, the predicative graph Gpred, the performance graph

Gperf and a visualization of the simulation are shown. In accordance with the boid rule in

Figure 7.4(a), all boids apply a reposition procedure, indicated by the self-referencing edge.

The second boid rule, displayed in Figure 7.4(b), substitutes neighborhood relations ν in Gpred

with accelboid relations inGperf . The neighborhood relations can be verified qualitatively, when

observing the simulation visualization at the bottom of Figure 7.5. Agents that are close to each

other fulfill the neighborhood relation, as indicated by the edges.

Running the boid simulation for several hundred iterations, the boids cluster. This effect

cannot only be seen when looking at the actual movement of the agents, but also when looking

at the degree of connectedness of Gpred and Gperf in Figure 7.5(b).

129

(a) (b)
Figure 7.5: (a) Gpred, Gperf and a two-dimensional visualization of a SGG-driven boids sim-
ulation. (b) After several hundred iterations of the SGG main loop (Algorithm 5), the boid
agents have clustered.

7.2.2 Swarm grammars with SGGs

Swarm grammars extend the boid model with (1) the agents leaving traces in space and (2)

being able to reproduce. Additionally, the extended swarm grammar model equips the agents

for (3) event-triggered reproduction and construction. In the following paragraphs, behavioral

rules are added to the boid individuals, in order to consecutively extend the model and to retrace

the three outlined aspects of basic and extended swarm grammars.

Particle Traces

Adding the two rules displayed in Figure 7.6 to gboid yields a new genotype gconstr which

results in continuously constructing swarm individuals. Without precondition, boidref applies

the performance relation timer++ to itself, increasing an internal variable time ∈ Dat with

a value set T = [0, φ] (Fig. 7.6(a)). timer>φ, on the other hand, tests whether the internal

variable time of boidref is greater than a given threshold φ. If the predicate timer>φ is true,

boidref creates and initializes a new node called “particle” with the performance relation initP .

130

The initialization performance initP assigns a particle genotype gparticle to the newly created

node, which determines its visual properties and renders it motionless and indifferent to its

environment. It also positions particle0 just behind boidref . Figure 7.7 (a) shows the first

simultaneous construction process of a group of agents. In Gperf the new nodes are added next

to their creator nodes. Figure 7.7 (b) depicts a later stage of the constructive swarm simulation,

where some swarm individuals perceive several particles in their neighborhood but do not react

to them.

(a) (b)
Figure 7.6: (a) boidref counts up an internal variable via timer++. (b) When its internal
variable exceeds a certain threshold φ, it creates a new node and initializes it as a “particle”.

131

(a) (b)
Figure 7.7: (a) Constructive swarm individuals simultaneously create and initialize new particle
nodes (black squares in the visualization). (b) Several iterations into the constructive swarm
simulation, some swarm individuals perceive particles in their neighborhoods.

132

Agent reproduction

When the swarm individuals create new nodes and pass on their own genotypes instead of

gparticle, the number of agents quickly increases and the particle traces branch out. Adding two

corresponding rules (Figure 7.8) leads to the evolution of the simulation displayed in Figure

7.9. As the interval of the timer that is introduced to trigger the reproduction overlaps with

the construction timer, two self-referencing predicative relations can be seen, when the agents

proliferate. New swarm individuals are added to the perimeter of the graphs Gpred and Gperf .

The emerging structure in the visualization window in Figure 7.9(b) is typical for many

grammatical developmental systems. The number of nodes close to the center of the graphs

show how productive their builder agents in the perimeter have been.

(a) (b)

Figure 7.8: (a) A second timer is maintained through timer(2)
++. (b) The newly introduced timer

triggers proliferation.

133

(a) (b)

Figure 7.9: (a) timer>φ tiggers the construction of a particle while timer(2)
>φ causes the agent

to proliferate. (b) A branching structure emerges.

134

Stigmergic interactions (extended SGs)

As a stigmergic interaction example, the swarm individuals are instructed to remove particles

on sight. The genotype gconstr is extended with an according rule (Figure 7.10). The resulting

simulation is shown in Figure 7.11. Note the seemingly random regression of particle nodes in

Gperf and Gpred, respectively.

boidref

particle0

ν

6

boidref

-

Figure 7.10: A particle is removed on sight.

(a) (b)
Figure 7.11: (a) One of the individuals on the perimeter of Gpred perceives a particle, situated
closer to the center of the graph. (b) The particle has disappeared from the visualization at the
bottom.

135

7.3 Status quo of swarm graph grammars

The presented algorithmic concepts and implementations show how dynamic swarm networks

can be simulated beyond the scope of the spatially staged interplay of boid agents as investi-

gated in Chapter 6. Instead, by means of graphical rule representation and the visualization of

the emergent interaction networks, any kinds of relationships can be perceived and analyzed as

contributors to the systems’ dynamics.

Swarm graph grammars are a framework that drives computational processes through node-

oriented substitution of subgraphs. The sum of local relations results in global networks of

predicative and performance relations. SGGs incorporate the basic mechanisms of relational

queries and performances, node creation and deletion. However, actual problem-specific im-

plementations of the required predicative and performance relations have to be provided. They

are not part of the algorithmic framework. For illustrative purposes of the functionality of

swarm graph grammars, movement, perception, reproduction and construction as well as an

according set of node configurations are introduced to retrace boids, basic swarm grammars

and extended swarm grammars in a concise and unified algorithmic manner.

136

Chapter 8

Summary & future work

The contributions of this thesis touch upon numerous and diverse fields of research. Some of

them are general statements or suggest certain perspectives on well-developed concepts. Others

bring about new methodologies and create novel spaces for further investigation. However, an

intrinsically motivated search for understanding complex phenomena and the possibility to har-

ness artificial productivity and creativity drove the sequence of investigations and explorations.

Although several gaps needed patching and some of the chapters required the re-structuring

of contents, the presented order of the conducted projects corresponds well with their timely

succession.

In analogy to the chapter on related work that started out with the impressive architectural

examples built by social insects, the contribution of this thesis began with the formulation of

an abstract swarm-inspired CDM. Subsequently, the related work chapter touched upon de-

velopmental systems in general, computational creativity, the role of computational evolution,

and ended with investigations of complexity in evo-devo, CDM and swarm systems. The step-

wise development of swarm grammars (basic, extended and graph-based) retraced this chain

of arguments. Eventually, we arrived at the presentation of SGGs, a powerful representation of

CDMs that focusses on interwoven interaction processes. In addition to its expressiveness, it

provides a means for modeling and analyzing highly dynamic, complex systems.

Firstly, we are going to summarize the contributions of each chapter and explain their un-

derlying motivations. We show how the train of thought that guided this work confirms its

resolution and elucidates its purpose. Possible future research projects come naturally when

following the explanations of the presented work. Secondly, we present several short- and

long-term goals that directly build upon this thesis’ contributions.

137

8.1 Chapter-based résumé

Chapter 2 shed light on the outstanding constructions of social insect orders. In this context,

computational developmental systems were presented that strongly abstract from any natural

developmental systems, yet integrate important aspects such as reproduction and neighbor-

hood relationships. Even though CDMs are much simpler than any biological developmental

models, they were soon applied to promote artificial creativity and productivity. Evolutionary

computation has often provided the means to drive these constructive processes, to develop

CDMs so to speak. In this context, we mentioned several examples that generate art, design

and architecture and we led over to the category of specially designed computational evo-devo

systems. These lend themselves as example systems that easily reach complexities that are

hardly possible to engineer. The swarm metaphor of endless, recursively interwoven interac-

tion patterns provides an image that conveys a notion about these complexities; This insight

finalized the related work chapter—a loop was knotted from the motivating chain of arguments.

This loop in turn provided the starting point for the remainder of this thesis, whereas all the

previously mentioned topics were investigated and explored in respect to the swarm metaphor.

In order to conduct any studies in the realm of complex, developmental swarm systems, a

principal representation had to be created. One that integrates swarm dynamics with the pro-

ductivity exhibited by other CDMs. Hence, we formulated swarm grammars (Chapter 3). En-

tering new territory, we cautiously explored the capabilities, the behaviors and the productivity

of the novel CDM. The first swarm grammar representation was kept simple and solely merged

the boids model with L-systems by interpreting one symbol of a generative L-system gram-

mar as one flocking agent. As soon as we felt comfortable to observe and hone the systems’

configurations, we added expressiveness to the representation by considering communication

mechanisms exhibited by social insects. This concluded the extended swarm grammar model.

Before reaching this point, we had already started to rely on computational evolution to

138

breed aesthetically appealing SG structures (Chapter 4). We employed interactive breeding

techniques as we were still exploring the growth and development of SGs, without considering

any hard structural or functional constraints. However, we also explored new means to boost

the search for visually engaging SGs. The outcome was an immersive breeding scenario that

allowed an external breeder to tinker with SGs like a gardener with his plants. While exploring

the means of computational evolution, the discoveries made during our breeding experiments

propelled new exploratory excursions in collaborative arts projects. But the extension of the

SG model by means of stigmergic communication rendered an automatic breeding approach

inevitable.

This necessity heralded a formal task description for SGs. The appreciation of architecture

and the inspirational capability of construction of social insects let us promote swarm-driven

architecture (Chapter 5). Obviously, the first automatically evolved SGs should not be over-

whelmed by a multitude of functional requirements. Therefore, we aimed for the relatively

simple task to build non-functional architectural idea models, three-dimensional structures that

are created at an early stage of the architectural design process. We successfully fostered

creative and diverse results by assigning high fitness values to SGs based on their levels of

diversity, collaboration and communication during the construction processes.

This aspect of our implemented fitness evaluation triggered deeper investigations into the

realm of swarm complexity—investigations of the interaction networks that emerge during

swarm simulations (Chapter 6). Here, we observed the progression of neighborhood densities

in boid flocks. This complexity measure allowed us to identify phase transitions and quasi

stable states of previously evolved boid configurations. When we provided continuous graphs

of an average density function, boid configurations evolved that retraced the corresponding

values. Our results showed how interaction complexity can arise in 3D space and cause global

emergent phenomena such as one-way phase transitions or oscillations.

As seen in the examples of Chapter 7, swarm graph grammars are a successful attempt to

139

design one unifying representation that supports various artificial swarm models. Rule exe-

cution advances to the principal computational step. In basic swarm grammars for instance,

explicit grammatical substitution rules are only applied to introduce the aspects of construction

and proliferation and are considered independently of the agents’ flocking behavior. SGGs

neither differentiate between the creation of new particles or agents: Instead, it depends on

the constructor, or ancestor respectively, to determine the kind of node it introduces into the

system. This is especially important as the level of abstraction—whether a plant cell should,

for instance, grow in size, or whether it simply serves as a volumetric unit in a graphical

structure—is completely assigned to the behavioral model.

The boid model only considers neighborhood dependencies and induces local changes in

the agents’ accelerations. In constructive swarms, in contrast, a diverse set of relations governs

the interaction processes. For this reason we designed SGGs. By means of SGGs not only

spatial interrelations (neighborhood relationships) may guide a swarm simulation but any kind

of predicative relation. Similarly, the agents are not limited to adjusting their velocities but

they may affect any of their internal data and their global states. Together, the formulation of

predicative and performance relations is a generalization of the basic boid system that solely

acts based on location changes and in a three-dimensional space. Yet, the relationship dynam-

ics observed in boid systems is still applicable—in a multi-dimensional space of dependencies

that cannot be easily visualized. However, SGGs provide the means to model interdependen-

cies graphically and to systematically analyze the relationship graphs that emerge during the

simulation processes.

8.2 Future work

In this section we present several ideas for future research projects that directly surfaced from

the scientific outcomes of this thesis. Partially, we dedicate separate paragraphs to distin-

140

guishable topics as before. Additionally, however, we also draw images that necessitate a

comprehensive and well-coordinated research approach.

8.2.1 Swarm-driven architecture

To foster our work on swarm-driven architecture, the following steps could be immediately

considered.

1. Integration of Chapters 5 and 6: Investigation of the temporal development of the per-

ceived neighborhood ratio rn, or respectively the neighborhood density n̄(t), to further

elucidate the impact on the built constructions.

2. Exploration of the impact of alternative pre-defined shapes (e.g. convex geometries) on

the diversity and the design of emerging architectures.

3. Protocols of our evolutionary experiments underline the importance of an effective fitness

function and effective genetic operators. Here, too, further investigation is necessary to

find an optimum for diverse, appealing, and fit constructions that further facilitate the

exploration of architectural idea spaces.

4. Too great evolutionary pressures could result in very narrow assortments of bred designs.

To counter this effect of evolutionary over-fitting, we suggest the deployment of scalable

complexity measures that link the SG genotypes with the built architectures [153].

5. Evolution of specialist builders that fulfill certain construction tasks (also in respect of

their flocking behavior). Step-wise construction of a heterogeneous SG that incorporates

a hierarchically evolved differentiation policy. For these experiments, we could rely on

the hierarchical breeding scenarios presented in [121].

6. Possible improvements regarding the quality and diversity of individually bred SGs could

be achieved through changing the global conditions of the evolutionary framework, e.g.

141

through cyclic promotion of generalist and specialist individuals [187, 188], or through

improving the evolutionary operators that work on the genetic codes, e.g. through the

automatic adjustment of a genotype’s length [189].

7. Swarms that operate on 3D meshes instead of building freely in space. The vertex-vertex

system presented in [129] would directly support this idea.

The need for functional interior design

Evolutionary swarm design of architectural idea models works. However, in order to render

this technology applicable for architects it has to be fitted according to their needs. Hereby, the

main goals are an interactive way to promote the development of compelling designs as well as

the introduction of stronger constructional elaborations. The need to incorporate architectural

and constructional functionality could be addressed by a novel kind of artificial swarms that

we refer to as consumer swarms as opposed to constructive swarms. Christian Jacob expressed

the idea of such swarms that follow certain movements based on a regular routine. During

their flight they could assign fitness values to the exposed structures, thus driving the evolution

of the interior design of SG architecture. Here, the sequence of movements would have to

reflect the ontology of certain activities. Hybrids of consumer and constructive swarms (CC

hybrids) could actively change and improve the constructional design while utilizing the build-

ings according to their routines. Instead of constructing the whole building, these hybrids could

work on pre-defined architectures and ’carve them out’. Again, swarm agents that manipulate

3D meshes would be well-suited for this task. In this context, Gerald Hushlak underlined the

importance of the destruction of old structures to create the space for novel developments.

Although the possibility of the removal of construction elements in developmental swarm pro-

cesses has been implemented and tested, comprehensive studies on its impact on emergent

designs need to be conducted.

142

Introducing ecological features

Regarding the coarse constructional layout of a building, the evolution of SG architecture could

be driven by measures that consider the ecological and economic features of a building [103,

104, 107]. There are measures as simple as the reduction of required construction material but

also those that demand for complex physical simulations such as the streams of ventilation or

the demand for thermal energy. Jörg Denzinger was the first to suggest using swarms for these

processes as well—instead of extensive numerical simulations (e.g. grid-based diffusion), the

swarm agents’ perceptional capabilities and high-level behaviors could drastically reduce the

involved computational cost. For the development of course-grained architectural models, this

approach might bear great potential.

Building in context

Interior design and ecological features are very important corner stones of architecture. How-

ever, a building is also placed into an environmental context comprising landscape and climate,

neighboring buildings and infrastructure and cultural, traditional expectations. In order to con-

sider these factors, we suggest the following three steps: (1) Modeling the existing environment

as closely as necessary. (2) Entrain CC hybrid swarms to mimic the locally established behav-

iors of movement. (3) Evolve SG architectures and deploy the CC hybrids to adapt the evolved

architecture.

Additionally, if there is a great similarity among the existing buildings, one might consider

extracting their basic features to create a pre-defined prototype architecture that CC hybrid

swarms should learn to decorate and optimize.

8.2.2 Working with swarm graph grammars

SGGs have the potential to evolve complex structures. As in [58], graph-based genetic op-

erators can be introduced to drive evolutionary processes. Based on comprehensive analyses

of the network dynamics, an evolutionary development of desired interaction cycles can be

143

achieved [6]. Evolutionary pressure can be exercised based on a diverse set of complexity

measures. In SGGs the behavioral rules, the emerging graphs, the interaction networks over

periods of time, or fixed generated structures could be objected to these measures. Especially

the observation of interaction dynamics over time might reveal important information to breed

systems of higher-order complexity [138].

Building hierarchies through functional subnetworks

When functional subsystems of an SGG’s emergent network are discovered, machine learn-

ing techniques [118] could be applied to identify their dependencies over time. The resulting

knowledge about required influx and produced output of an according subsystem would then

allow to disguise its inner workings as a black box. Obviously, complex spatial and functional

bottom-up hierarchies could be built through repetition of this process of abstraction. In case

the requirements that drive a subsystem are not met anymore, its modularization could be re-

voked and the impact of the changed environmental conditions would be computed from the top

to the bottom of the hierarchy of dependencies. We believe such an automatic bottom-up/top-

down approach bears the potential to scale the simulation of complex computational systems.

From a modeling perspective, the outlined approach bridges between SGGs that incorporate

locally defined agent interactions and emerging interaction cycles and the compartmentalized

formal modeling approach of membrane computing (MC) [190, 191].

Opening dimensions through graphical representation

In developmental SGGs, mapping the systems’ predicative and performance graphs on two

dimensions quickly becomes confusing. Therefore, we advocate the transition to a three-

dimensional graph-visualization with the ability to move and browse through virtual space.

In such an immersive environment, user-interference could be promoted through highlighting

schemes for visual and automatic stochastic analysis of certain areas of the graphs.

Drawing the relational graphs of an SGG precisely illustrates the computational interde-

144

pendencies and interactions of a simulation, but on an abstract level. When isolating certain

relations, completely new perspectives on the simulation and on its results could be gained.

Non-spatial relations would be rendered spatially and therefore become accessible to our minds

prone to everyday life.

8.2.3 Virtual walk-through of an interactive swarm design process

Imagine the following scenario [192]. An interdisciplinary team of researchers has gathered

around a table. A holographic, three-dimensional still image hovers several inches above the

desktop. Before the researchers debate how to tackle the presented problem, each tries to

capture the problem alone. After several minutes have passed, the experts describe what they

see through their own eyes facing the challenge. They explain what an ideal solution to the

problem might look like, point out the differences to the visualization in front of them and

suggest ways to get from the status quo to the desired goal. Some members of the group

realize that the spoken word defines and confines meaning within the parameters of language,

others point out the need for additional semantics and offer visual cues to their unconscious

that are outside of language. After listening to each others opinions, the meeting is adjourned.

For the following session the team members prepare visual representations of the problem

and ideal solutions defined in a pragmatic way. A resulting three-dimensional graph is blended

into the projection that again occupies the space above the table. The most relevant units in

the scope of the problem are represented as spherical nodes. The nodes are connected through

spatial edges that indicate relationships among the involved units. While explaining the model,

the original three-dimensional image of the problem fades out slightly in order to highlight the

experts theoretical, graphical model of the situation and its solution. Fading is good because

thought becomes more abstract and is not confined to the constraints of the display. The experts

begin to discuss the tangibles of the teams understanding of the design task. The team agrees to

consider those corner stones that provide models that deviate from the normative expectations.

145

During the next meeting, sets of solutions are reviewed that were discovered in the im-

plicitly defined space of possible solutions. The solutions that the team prefers require a re-

adjustment from first principles. This process of model improvements may be repeated several

times. In the meantime, small changes could be manually or automatically introduced into the

model on various scales to analyse the robustness of the interaction networks of the solution.

New aspects become obvious throughout the inspection and revision sessions. For instance,

unbearable costs and implementation times of the suggested solutions might call for improve-

ments. Eventually, the team chooses among the presented solutions. Details on the transition

from the status quo to the result are revealed by the projective computational engine and stud-

ied by the team. Knowing what has to be done to master the challenge, the team maps the

theoretical solution to a project plan and takes the appropriate actions.

The expert team can address anything in Anyville: The combination of swarm grammars

as bio-inspired generative representation and evolutionary exploration of innovative designs

opens up an array of possibilities to develop dynamic processes, like gene regulatory pro-

cesses [193, 194], immune systems [10, 195], swarm choreographies [83], interactive Swarm-

Art installations [86, 196] and (post-)modern ecological architectural designs. Of course, the

outlined design process describes but one methodological projective scenario that integrates in-

terdisciplinary expertise, teamwork, graphical modelling, complex simulation and bio-inspired

learning techniques. The presented computer-supported team-play is a viable and potentially

fruitful scenario for tackling complex problems. It outlines one visionary and productive way to

integrate the concepts of swarm intelligence and evolutionary computation that were presented

in this thesis.

146

Bibliography

[1] S. von Mammen, “Swarm grammars - a new approach to dynamic growth,” technical

report, University of Calgary, Calgary, Canada, May 2006.

[2] C. Jacob and S. von Mammen, “Swarm grammars: growing dynamic structures in 3d

agent spaces,” Digital Creativity: Special issue on Computational Models of Creativity

in the Arts, vol. 18, pp. 54–64, March 2007.

[3] S. von Mammen and C. Jacob, “Genetic swarm grammar programming: Ecologi-

cal breeding like a gardener,” in 2007 IEEE Congress on Evolutionary Computation

(D. Srinivasan and L. Wang, eds.), IEEE Press, pp. 851–858, 2007.

[4] S. von Mammen and C. Jacob, “Evolutionary swarm design of architectural idea mod-

els,” in Genetic and Evolutionary Computation Conference (GECCO) 2008, (New York,

NY, USA), pp. 143–150, ACM Press, 2008.

[5] S. von Mammen, J. Wong, and C. Jacob, “Virtual constructive swarms: Compositions

and inspirations,” in Applications of Evolutionary Computing, Proceedings of EvoWork-

shops 2008, vol. 4974 of Lecture Notes in Computer Science, (Berlin-Heidelberg),

pp. 491–496, Springer-Verlag, 2008.

[6] S. von Mammen and C. Jacob, “Swarm-driven idea models - from insect nests to modern

architecture,” in Eco-Architecture 2008, Second International Conference on Harmoni-

sation Between Architecture and Nature (C. Brebbia, ed.), (Winchester, UK), pp. 117–

126, WIT Press, 2008.

[7] S. von Mammen and C. Jacob, “The spatiality of swarms — quantitative analysis of

dynamic interaction networks,” in Proceedings of Artificial Life XI, pp. 662–669, MIT

Press, 2008.

147

[8] J. Klein, “breve: a 3d simulation environment for multi-agent simulations and artificial

life..” http://www.spiderland.org/, October 2008.

[9] J. Schneider, “Website of Jürgen Schneider.” http://www2.informatik.

uni-erlangen.de/Personen/schneide/?language=en, March 2009.

[10] C. Jacob, J. Litorco, and L. Lee, “Immunity through swarms: Agent-based simulations

of the human immune system,” in Artificial Immune Systems, ICARIS 2004, Third Inter-

national Conference, (Catania, Italy), LNCS 3239, Springer, 2004.

[11] D. Dasgupta, “Advances in artificial immune systems,” Computational Intelligence

Magazine, IEEE, vol. 1, no. 4, pp. 40–49, Nov. 2006.

[12] M. Resnick, Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel

Microworlds. Complex Adaptive Systems, Cambridge, MA: MIT Press, 1997.

[13] C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral model,” in SIG-

GRAPH ’87 Conference Proceedings, vol. 4, pp. 25–34, 1987.

[14] G. Theraulaz and E. Bonabeau, “Modelling the collective building of complex archi-

tectures in social insects with lattice swarms,” Journal of Theoretical Biology, vol. 177,

no. 4, pp. 381–400, 1995.

[15] J. Glancey, Story of Architecture. Dorling Kindersley, 2001.

[16] B. Hölldobler and E. O. Wilson, The Ants. Berlin-Heidelberg: Springer-Verlag, 1990.

[17] S. Levy, Artificial Life: A Report from the Frontier where Computers Meet Biology.

Vintage Books, A Division of Random House, Inc., 1993.

[18] S. Kauffman, The origins of order. Oxford Univ. Press New York, 1993.

[19] K. von Frisch, Animal Architecture. Harcout Brace Jovanovich, New York, 1974.

148

http://www.spiderland.org/
http://www2.informatik.uni-erlangen.de/Personen/schneide/?language=en
http://www2.informatik.uni-erlangen.de/Personen/schneide/?language=en

[20] B. Hall and W. Olson, Keywords and concepts in evolutionary developmental biology.

Harvard University Press, 2003.

[21] H. Honour and J. Fleming, Weltgeschichte der Kunst. Munich, Germany: Prestel, 2007.

[22] I. Flagge, R. Schneider, and D. Architekturmuseum, Die Revision Der Postmoderne:

Post-modernism Revisited:[in Memoriam Heinrich Klotz]. DAM, Deutsches Architek-

turmuseum, 2004.

[23] W. Thaler and B. Hölldobler, “Ants - nature’s secret power.” Documentary Film. ORF -

Natural History Unit. Vienna, Austria., 2004.

[24] I. Karsai and Z. Penzes, “Comb building in social wasps: Self-organization and stigmer-

gic script,” Journal of Theoretical Biology, vol. 161, no. 4, pp. 505–525, 1993.

[25] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Ar-

tificial Systems. Santa Fe Institute Studies in the Sciences of Complexity, New York:

Oxford University Press, 1999.

[26] G. Theraulaz and E. Bonabeau, “Coordination in Distributed Building,” Science,

vol. 269, no. 5224, pp. 686–688, 1995.

[27] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau,

Self-Organization in Biological Systems. Princeton Studies in Complexity, Princeton:

Princeton University Press, 2003.

[28] P.-P. Grassé, “La reconstruction du nid et les coordinations interindividuelles chezbelli-

cositermes natalensis etcubitermes sp. la théorie de la stigmergie: Essai d’interprétation

du comportement des termites constructeurs,” Insectes Sociaux, vol. 6, no. 1, pp. 41–80,

1959.

149

[29] M. Hansell, Built by animals: the natural history of animal architecture. Oxford Uni-

versity Press, USA, 2007.

[30] R. Jeanne, “The Adaptiveness of Social Wasp Nest Architecture,” The Quarterly Review

of Biology, vol. 50, no. 3, pp. 267–287, 1975.

[31] A. Smith, S. O’Donnell, and R. Jeanne, “Correlated evolution of colony defence and

social structure: A comparative analysis in eusocial wasps(Hymenoptera: Vespidae),”

Evolutionary Ecology Research, vol. 3, no. 3, pp. 331–344, 2001.

[32] D. Ladley and S. Bullock, “Logistic constraints on 3d termite construction,” in Fourth

International Workshop on Ant Colony (M. Dorigo, M. Birattari, L. M. Blum, F. Mon-

dada, and T. Stutzle, eds.), pp. 178–189, Springer, Berlin, 2004.

[33] F. Roces and J. Núñez, “Thermal sensitivity during brood care in workers of two cam-

ponotus ant species: Circadian variation and its ecological correlates,” Journal of Insect

Physiology, vol. 41, no. 8, pp. 659 – 669, 1995.

[34] F. Roces and C. Kleineidam, “Humidity preference for fungus culturing by workers of

the leaf-cutting ant atta sexdens rubropilosa,” Insectes Sociaux, vol. 47, no. 4, pp. 348–

350, 2000.

[35] C. Kleineidam and F. Roces, “Carbon dioxide concentrations and nest ventilation in

nests of the leaf-cutting ant atta vollenweideri,” Insectes Sociaux, vol. 47, no. 3, pp. 241–

248, 2000.

[36] C. Kleineidam, R. Ernst, and F. Roces, “Wind-induced ventilation of the giant nests of

the leaf-cutting ant atta vollenweideri,” Naturwissenschaften, vol. 88, no. 7, pp. 301–

305, 2001.

150

[37] J. Korb, “Thermoregulation and ventilation of termite mounds,” Naturwissenschaften,

vol. 90, no. 5, pp. 212–219, 2003.

[38] S. Kumar and P. J. Bentley, “Biologically inspired evolutionary development,” Evolvable

Systems: From Biology to Hardware, pp. 99–106, 2003.

[39] A. R. Smith, “Plants, fractals, and formal languages,” SIGGRAPH Comput. Graph.,

vol. 18, no. 3, pp. 1–10, 1984.

[40] J. von Neumann and A. W. Burks, Theory of self-reproducing automata. Urbana and

London: University of Illinois Press, 1966.

[41] W. A. Beyer, P. H. Sellers, and M. S. Waterman, “Stanislaw m. ulam’s contributions to

theoretical theory,” Letters in Mathematical Physics, vol. 10, pp. 231–242, 1985.

[42] E. F. Codd, Cellular Automata. New York, NY, USA: Academic Press, 1968.

[43] C. G. Langton, “Self-reproduction in cellular automata,” Physica D: Nonlinear Phenom-

ena, vol. 10, no. 1-2, pp. 135–144, 1984.

[44] J. Reggia, J. Lohn, and H. Chou, “Self-replicating structures: evolution, emergence, and

computation,” Artificial Life, vol. 4, no. 3, pp. 283–302, 1998.

[45] S. L. Miller, “A production of amino acids under possible primitive earth conditions,”

Science, vol. 117, no. 3046, pp. 528–529, 1953.

[46] W. Banzhaf, “Artificial chemistries - towards constructive dynamical systems,” Solid

State Phenomena, pp. 43 – 50, 2004.

[47] O. Patry, “Organic builder: An artificial chemistry simulation.” http://

organicbuilder.sourceforge.net, March 2009.

151

http://organicbuilder.sourceforge.net
http://organicbuilder.sourceforge.net

[48] J. Z. Peter Dittrich and W. Banzhaf, Artificial Chemistries - A Review, pp. 225 – 275.

MIT Press, 2001.

[49] A. Lindenmayer, “Developmental systems without cellular interactions, their languages

and grammars,” Journal of Theoretical Biology, vol. 30, no. 3, pp. 455–484, 1971.

[50] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants. Springer-

Verlag, 1996.

[51] M. Frame and Ginger Booth, “Online l-system simulator.” http://classes.

yale.edu/fractals/Software/lsystem.html, March 2009.

[52] C. Jacob, Illustrating Evolutionary Computation with Mathematica. San Francisco, CA:

Morgan Kaufmann Publishers, 2001.

[53] M. J. M. d. Boer and M. d. Does, “The relationship between cell division pattern and

global shape of young fern gametophytes. i. a model study,” Botanical Gazette, vol. 151,

no. 4, pp. 423–434, 1990.

[54] J.-L. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz, Modelling and Simulation of

biological processes in the context of genomics, ch. Computational Models for Integra-

tive and Developmental Biology. Hermes, 2002.

[55] J.-L. Giavitto and O. Michel, “Modeling the topological organization of cellular pro-

cesses,” Biosystems, vol. 70, no. 2, pp. 149–163, 2003.

[56] A. Spicher, O. Michel, and J.-L. Giavitto, “A topological framework for the specification

and the simulation of discrete dynamical systems,” Cellular Automata, pp. 238–247,

2004.

[57] J.-L. Giavitto and O. Michel, “Data structure as topological spaces,” Unconventional

Models of Computation, pp. 137–150, 2002.

152

http://classes.yale.edu/fractals/Software/lsystem.html
http://classes.yale.edu/fractals/Software/lsystem.html

[58] O. Kniemeyer, G. H. Buck-Sorlin, and W. Kurth, “A graph grammar approach to artifi-

cial life,” Artificial Life, vol. 10, no. 4, pp. 413–431, 2004.

[59] O. Kniemeyer, G. Buck-Sorlin, and W. Kurth, “Groimp as a platform for functional-

structural modelling of plants,” in Functional-Structural Plant Modelling in Crop Pro-

duction (J. Vos, L. F. M. Marcelis, P. H. B. deVisser, P. C. Struik, and J. B. Evers, eds.),

pp. 43–52, Springer, March 2006.

[60] O. Kniemeyer, G. Barczik, R. Hemmerling, and W. Kurth, “Relational Growth

Grammars—A Parallel Graph Transformation Approach with Applications in Biology

and Architecture,” Lecture Notes In Computer Science, pp. 152–167, 2008.

[61] W. Kurth, G. Buck-Sorlin, and O. Kniemeyer, “Relationale wachstumsgrammatiken:

Ein formalismus zur spezifikation multiskalierter struktur-funktions-modelle von

pflanzen,” Modellierung pflanzlicher Systeme aus historischer und aktueller Sicht. Sym-

posium zu Ehren von Prof. Dr. Dr. h.c. Eilhard Alfred Mitscherlich, no. 7, pp. 36–45,

2006.

[62] K. Culik and A. Lindenmayer, “Parallel graph generating and graph recurrence systems

for multicellular development,” International Journal of General Systems, vol. 3, no. 1,

pp. 53–66, 1976.

[63] M. Nagl, “On the relation between graph grammars and graph l-systems,” Fundamentals

of Computation Theory, pp. 142–151, 1977.

[64] A. Lindenmayer, “An introduction to parallel map generating systems,” Graph-

Grammars and Their Application to Computer Science, pp. 27–40, 1987.

[65] N. Chomsky, “Three models for the description of language,” Information Theory, IRE

Transactions on, vol. 2, no. 3, pp. 113–124, 1956.

153

[66] R. Kirsch, “Computer interpretation of English text and picture patterns,” IEEE Trans-

actions on Electronic Computers, pp. 363–376, 1964.

[67] W. Watt, “Morphology of the Nevada cattle brands and their blazons” report 9050 (out

of print) National Bureau of Standards,” Washington, DC, 1966.

[68] G. Stiny and W. Mitchell, “The palladian grammar,” Environment and Planning B, vol. 5,

no. 1, pp. 5–18, 1978.

[69] L. Sass, “A palladian construction grammar-design reasoning with shape grammars and

rapid prototyping,” Environment and Planning B: Planning and Design, vol. 34, pp. 87–

106, 2007.

[70] D. Y. Kwon, M. D. Gross, and E. Yi-Luen Do, “Archidna: An interactive system for cre-

ating 2d and 3d conceptual drawings in architectural design,” Computer-Aided Design,

vol. In Press, 2008.

[71] J. Kirsch and R. Kirsch, “The structure of paintings: formal grammar and design,” En-

vironment and Planning B: Planning and Design, vol. 13, no. 2, pp. 163–176, 1986.

[72] M. Whitelaw, Metacreation: art and artificial life. MIT Press, 2004.

[73] S. Todd and W. Latham, Evolutionary Art and Computers. Academic Press, Inc. Or-

lando, FL, USA, 1994.

[74] J. Romero and P. Machado, The art of artificial evolution: A handbook on evolutionary

art and music. Springer-Verlag New York Inc, 2007.

[75] J. McCormack, J. Bird, A. Dorin, and A. Jonson, Impossible Nature: The Art of John

McCormack. Australian Centre for the Moving Image, 2004.

[76] P. Bentley and D. Corne, eds., Creative Evolutionary Systems. Artificial Intelligence,

San Francisco, CA: Morgan Kaufmann, 2001.

154

[77] M. King, “Programmed graphics in computer art and animation,” Leonardo, vol. 28,

no. 2, pp. 113–121, 1995.

[78] J. Yu, “Evolutionary design of 2d fractals and 3d plant structures for computer graphics,”

master’s thesis, Department of Computer Science, University of Calgary, 2004.

[79] O. Deussen, P. Hanrahan, B. Lintermann, R. Mech, M. Pharr, and P. Prusinkiewicz,

“Realistic modeling and rendering of plant ecosystems,” in SIGGRAPH 98, Computer

Graphics, Annual Conference Series, pp. 275–286, ACM SIGGRAPH, 1998.

[80] J. McCormack, “Art and the mirror of nature,” Digital Creativity, vol. 14, pp. 3–22,

2003.

[81] R. Dawkins, The Blind Watchmaker. Harlow: Longman Scientific and Technical, 1987.

[82] K. Sims, “Artificial evolution for computer graphics,” in Proceedings of the 18th annual

conference on Computer graphics and interactive techniques, vol. 25(4), (New York),

pp. 319–328, ACM Press, 1991.

[83] H. Kwong and C. Jacob, “Evolutionary exploration of dynamic swarm behaviour,” in

Congress on Evolutionary Computation, (Canberra, Australia), IEEE Press, 2003.

[84] H. Kwong, “Evolutionary design of implicit surfaces and swarm dynamics,” Master’s

thesis, University of Calgary, Canada, 2003.

[85] A. C. Nardella, “Website of Anna C. Nardella.” http://www.annanardella.

it/, March 2009.

[86] C. Jacob, G. Hushlak, J. Boyd, P. Nuytten, M. Sayles, and M. Pilat, “Swarmart: Interac-

tive art from swarm intelligence,” Leonardo, vol. 40, no. 3, 2007.

[87] M. Whitelaw, Breeding Aesthetic Objects: Art and Artificial Evolution, pp. 129–145.

San Francisco: Morgan Kaufmann, 2001.

155

http://www.annanardella.it/
http://www.annanardella.it/

[88] D. Thomas, “Aesthetic selection of developmental art forms,” in Artificial Life VIII,

The 8th International Conference on the Simulation and Synthesis of Living Systems,

(Cambridge), pp. 157–163, MIT Press, 2002.

[89] M. Hemberg, “Genr8 - a design tool for surface generation,” Master’s thesis, MIT, June

2001.

[90] M. Hemberg, U.-M. O’Reilly, A. Menges, K. Jonas, M. da Costa Gonçalves, and S. R.

Fuchs, The Art of Artificial Life: A Handbook on Evolutionary Art and Music, ch. Genr8:

Architects’ Experience with an Emergent Design Tool, pp. 167–188. Natural Comput-

ing Series, Springer, 2008.

[91] J. Rügemer, “From digital to real: Theoretical-digital architectural concepts and the

realization of complex spatial forms,” in Education and research in computer aided

architectural design in europe (eCAADe), (Warsaw, Poland), 2002.

[92] R. Saleri, “Urban and architectural 3D fast processing,” in 9th International conference

on generative art (S. C., ed.), (Milano), 2006.

[93] J. Romero, P. Machado, A. Santos, and A. Cardoso, “On the Development of Critics

in Evolutionary Computation Artists,” LECTURE NOTES IN COMPUTER SCIENCE,

pp. 559–569, 2003.

[94] P. Machado, J. Romero, and B. Manaris, “Experiments in computational aesthetics,” in

The Art of Artificial Evolution (P. Machado and J. Romero, eds.), Natural Computing

Series, Springer, 2007.

[95] H.-P. Schwefel, Numerische Optimierung von Computer–Modellen mittels der Evolu-

tionsstrategie, vol. 26 of Interdisciplinary Systems Research. Basle: Birkhäuser, 1977.

156

[96] J. Koza, Genetic programming: A paradigm for genetically breeding populations of

computer programs to solve problems. Department of Computer Science, Stanford Uni-

versity, 1990.

[97] J. R. Koza, M. A. Keane, and M. J. Streeter, “Routine high-return human-competitive

evolvable hardware,” in 2004 NASA/DoD Conference on Evolvable Hardware, pp. 3–17,

2004.

[98] M. McQuaid, Envisioning Architecture: Drawings from the Museum of Modern Art.

New York, NY, USA: The Museum of Modern Art, 2002.

[99] H. Frichot, “On the death of architectural theory and other spectres,” Design Principles

and Practices: An International Journal, To appear in 2009.

[100] M. Speaks, “Which way avant-garde?,” Assemblage, no. 41, p. 78, 2000.

[101] R. Somol and S. Whiting, “Notes around the doppler effect and other moods of mod-

ernism,” Perspecta, vol. 33, pp. 72–77, 2002.

[102] W. Knoll and M. Hechinger, Architektur-Modelle: Anregungen zu Ihrem Bau. Munich,

Germany: Deutsche Verlangs-Anstalt, 2006.

[103] S. Bergen, S. Bolton, and J. L. Fridley, “Design principles for ecological engineering,”

Ecological Engineering, vol. 18, no. 2, pp. 201–210, 2001.

[104] S. Van der Ryn and S. Cowan, Ecological Design. Island Press, 2007.

[105] D. Pearson, New Organic Architecture: The Breaking Wave. University of California

Press, 2001.

[106] A. J. Anselm, “Developing designs in balance with nature,” in Eco-Architecture: Har-

monisation between Architecture and Nature (G. Broadbent and C. Brebbia, eds.), Trans-

157

actions on the Built Environment, pp. 195–204, Wessex Institute of Technology, WIT

Press, 2006.

[107] K. Gowri, “Green building rating systems: An overview.,” ASHRAE Journal, vol. 46,

no. 11, pp. 56–60, 2004.

[108] E. Coen, The art of genes. Oxford University Press New York, 1999.

[109] W. Banzhaf, J. Koza, C. Ryan, L. Spector, and C. Jacob, “Genetic programming,” IEEE

Intelligent Systems and Their Applications, vol. 15, no. 3, pp. 74–84, 2000.

[110] P. E. Griffiths and R. D. Gray, “Developmental systems and evolutionary explanation,”

The Journal of Philosophy, vol. 91, no. 6, pp. 277–304, 1994.

[111] S. Kauffman, At Home in the Universe: The Search for the Laws of Self-Organization

and Complexity. Oxford University Press, 1995.

[112] L. Margulis and S. Dorion, What is Life? University of California Press, 2000.

[113] R. Dawkins, “Selfish genes and selfish memes,” The Mind’s I: Fantasies and Reflections

on Self and Soul, pp. 124–144, 1981.

[114] M. Best, “How Culture Can Guide Evolution: An Inquiry into Gene/Meme Enhance-

ment and Oppostion,” Adaptive Behavior, vol. 7, no. 3/4, pp. 289–306, 1999.

[115] G. Witzany, “Natural history of life: History of communication logics and dynamics,”

SEED Journal, vol. 5, no. 1, pp. 27–55, 2005.

[116] R. L. Chisholm and R. A. Firtel, “Insights into morphogenesis from a simple develop-

mental system,” Nat Rev Mol Cell Biol, vol. 5, no. 7, pp. 531–541, 2004.

[117] R. Rojas, Neural Networks - A Systematic Introduction. Berlin, New York: Springer-

Verlag, 1996.

158

[118] T. Mitchell, Introduction to Machine Learning. Boston, Massachusettes: McGraw Hill,

1997.

[119] J. C. Astor and C. Adami, “A developmental model for the evolution of artificial neural

networks,” Artif. Life, vol. 6, no. 3, pp. 189–218, 2000.

[120] K. Sims, “Evolving 3D morphology and behaviour by competition,” in Artificial Life IV

Proceedings (R. Brooks and P. Maes, eds.), (MIT, Cambridge, MA, USA), pp. 28–39,

MIT Press, 6-8July 1994.

[121] M. Pilat, Morphid Academy: A Virtual Laboratory for Evolution of Form and Function.

PhD thesis, University of Calgary, 2009.

[122] F. Dellaert and R. Beer, “A developmental model for the evolution of complete au-

tonomous agents,” in SAB ’96, 1996.

[123] G. S. Hornby and J. B. Pollack, “Creating high-level components with a generative

representation for body-brain evolution,” Artif. Life, vol. 8, no. 3, pp. 223–246, 2002.

[124] J. M. Denu, J. A. Stuckey, M. A. Saper, and J. E. Dixon, “Form and function in protein

dephosphorylation,” Cell, vol. 87, pp. 361–364, 11 1996/11/1.

[125] P. Watson, “Function follows form: generation of intracellular signals by cell deforma-

tion,” The FASEB Journal, vol. 5, no. 7, pp. 2013–2019, 1991.

[126] D. Ingber, “The architecture of life,” Scientific American, vol. 278, no. 1, pp. 48–57,

1998.

[127] C. Paul, H. Lipson, and F. J. V. Cuevas, “Evolutionary form-finding of tensegrity struc-

tures,” in GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary

computation, (New York, NY, USA), pp. 3–10, ACM Press, 2005.

159

[128] N. Khemka, C. Jacob, and G. Cole, “Making soccer kicks better: a study in particle

swarm optimization,” in GECCO ’05: Proceedings of the 2005 workshops on Genetic

and evolutionary computation, (New York, NY, USA), pp. 382–385, ACM, 2005.

[129] C. Smith, On Vertex-Vertex Systems and Their Use in Geometric and Biological Mod-

elling. PhD thesis, University of Calgary, 2006.

[130] E. Coen, A. Rolland-Lagan, M. Matthews, J. Bangham, and P. Prusinkiewicz, “The ge-

netics of geometry,” Proceedings of the National Academy of Sciences, vol. 101, no. 14,

pp. 4728–4735, 2004.

[131] A. Lisi, “An exceptionally simple theory of everything,” arxiv, vol. 711, no. 6, 2007.

[132] S. Lloyd, Programming the universe: a quantum computer scientist takes on the cosmos.

Vintage Books, 2007.

[133] M. Gardner, “Mathematical games: The fantastic combinations of john conway’s new

solitaire game ”life”,” Scientific American, vol. 223, pp. 120–123, October 1970.

[134] S. Wolfram, A new kind of science. Champaign, Ilinois, US, United States: Wolfram

Media Inc., 2002.

[135] S. Wolfram, “Cellular automata as models of complexity,” Nature, vol. 311, pp. 419–

424, October 1984.

[136] S. Wolfram, “Stephen Wolfram: A New Kind of Science – Reference Material.” http:

//www.wolframscience.com/reference/, March 2009.

[137] R. Bagley and J. Farmer, “Spontaneous emergence of a metabolism,” in Artificial Life

II, (Cambridge, MA, USA), MIT Press, 1990.

[138] P. Schuster, “How does complexity arise in evolution,” Complex., vol. 2, no. 1, pp. 22–

30, 1996.

160

http://www.wolframscience.com/reference/
http://www.wolframscience.com/reference/

[139] J. Holland, Hidden order: How adaptation builds complexity. Addison Wesley Publish-

ing Company, 1996.

[140] J. Bader, “The drosophila protein interaction network may be neither power-law nor

scale-free,” Power Laws, Scale-Free Networks and Genome Biology, pp. 53–64, 2006.

[141] J. Buhl, J. Gautrais, R. Solé, P. Kuntz, S. Valverde, J. Deneubourg, and G. Theraulaz,

“Efficiency and robustness in ant networks of galleries,” The European Physical Journal

B-Condensed Matter, vol. 42, no. 1, pp. 123–129, 2004.

[142] C. A. Hidalgo and A.-L. Barabasi, “Scale-free networks,” Scholarpedia: The free peer

reviewed encyclopedia, 2006.

[143] J. Travers and S. Milgram, “An experimental study of the small world problem,” So-

ciometry, vol. 32, no. 4, pp. 425–443, 1969.

[144] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks.,” Na-

ture, vol. 393, pp. 440–442, June 1998.

[145] C. Moore and M. E. J. Newman, “Epidemics and percolation in small-world networks,”

Physical Review E, vol. 61, p. 5678, 2000.

[146] V. Latora and M. Marchiori, “Economic small-world behavior in weighted networks,”

2002.

[147] R. Albert, “Boolean modeling of genetic regulatory networks,” Complex Networks,

pp. 459–481, 2004.

[148] R. Serra, M. Villani, and L. Agostini, “On the dynamics of scale-free boolean networks,”

Neural Nets, pp. 43–49, 2003.

161

[149] M. Afsharchi, B. Far, and J. Denzinger, “Ontology-guided learning to improve com-

munication between groups of agents,” in Proceedings of the fifth international joint

conference on Autonomous agents and multiagent systems, pp. 923–930, ACM New

York, NY, USA, 2006.

[150] S. Johnson, Emergence: The Connected Lives of Ants, Brains, Cities, and Software.

New York: Scribner, 2001.

[151] J. H. Holland, Emergence: From Chaos to Order. New York: Oxford University Press,

1998.

[152] G. S. Hornby, “Generative representations for evolving families of designs,” in GECCO

(E. Cantú-Paz, J. A. Foster, K. Deb, L. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer,

R. K. Standish, G. Kendall, S. W. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A.

Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, and J. F. Miller, eds.), vol. 2724 of

Lecture Notes in Computer Science, pp. 1678–1689, Springer, 2003.

[153] G. S. Hornby, “Measuring complexity by measuring structure and organization,” in 2007

IEEE Congress on Evolutionary Computation (D. Srinivasan and L. Wang, eds.), (Sin-

gapore), pp. 2017–2024, IEEE Press, 2007.

[154] M. Wooldridge, An Introduction to MultiAgent Systems. Chichester, England: John

Wiley and Sons, February 2002.

[155] C. W. Reynolds, “Website of Craig W. Reynolds.” http://www.red3d.com/

cwr/, March 2009.

[156] I. Burleigh, “Vigo::3d: A framework for simulating and visualizing of three-dimensional

scenes..” http://vigo.sourceforge.net/docs/, October 2008.

162

http://www.red3d.com/cwr/
http://www.red3d.com/cwr/
http://vigo.sourceforge.net/docs/

[157] Aesthetics and Computation Group at the MIT Media Lab, “Processing language and

programming environment.” http://processing.org/, October 2008.

[158] U. Wilensky and the CCL at Northwestern University, “Netlogo: A cross-

platform multi-agent programmable modeling environment.” http://ccl.

northwestern.edu/netlogo/, October 2008.

[159] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of phase

transition in a system of self-driven particles,” J. Exp. Mar. Biol. Ecol Phys Rev Lett,

vol. 75, p. 1226, 1989.

[160] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel Type of Phase

Transition in a System of Self-Driven Particles,” Physical Review Letters, vol. 75, no. 6,

pp. 1226–1229, 1995.

[161] A. Czirok and T. Vicsek, “Collective behavior of interacting self-propelled particles,”

Arxiv preprint cond-mat/0611742, 2006.

[162] I. Derényi and T. Vicsek, “Cooperative transport of Brownian particles,” J. Phys. I

(France) Phys Rev Lett, vol. 75, p. 374, 1994.

[163] C. Huepe and M. Aldana, “New tools for characterizing swarming systems: A compari-

son of minimal models,” Physica A: Statistical Mechanics and its Applications, vol. 387,

no. 12, pp. 2809 – 2822, 2008.

[164] K. Kaneko, “Overview of coupled map lattices,” Chaos, vol. 2, p. 279, 07 1992.

[165] K. Kaneko, “Spatiotemporal chaos is one-and two-dimensional coupled map lattices,”

in CNLS conference on advances in fluid turbulence, vol. 16, 1988.

[166] J. Jost and M. Joy, “Spectral properties and synchronization in coupled map lattices,”

Science Phys Rev E, vol. 65, p. 016201, 1999.

163

http://processing.org/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

[167] A. Lemaı̂tre and H. Chaté, “Phase Ordering and Onset of Collective Behavior in Chaotic

Coupled Map Lattices,” Physical Review Letters, vol. 82, no. 6, pp. 1140–1143, 1999.

[168] H. Tanner, A. Jadbabaie, and G. Pappas, “Flocking in fixed and switching networks,” in

IEEE Conference on Decision and Control, vol. 1, p. 2, 2005.

[169] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and theory,”

IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420, 2006.

[170] L. Moura, “Website of leonel moura.” http://www.lxxl.pt, December 2007.

[171] T. Blackwell, “Swarming and music,” Evolutionary Computer Music, pp. 194–217,

2007.

[172] N. Khemka, S. Novakowski, G. Hushlak, and C. Jacob, “Evolutionary design of dy-

namic SwarmScapes,” in Proceedings of the 10th annual conference on Genetic and

evolutionary computation, pp. 827–834, ACM New York, NY, USA, 2008.

[173] L. Spector, J. Klein, C. Perry, and M. Feinstein, “Emergence of collective behavior in

evolving populations of flying agents,” Genetic Programming and Evolvable Machines,

vol. 6, no. 1, pp. 111–125, 2005.

[174] W. Wright, R. Smith, M. Danek, and P. Greenway, “A generalisable measure of self-

organisation and emergence,” Lecture notes in computer science, pp. 857–864, 2001.

[175] M. Pilat, “Wasp-inspired construction algortihms,” tech. rep., University of Calgary,

2004.

[176] S. von Mammen, C. Jacob, and G. Kókai, “Evolving swarms that build 3d structures,”

in CEC 2005, IEEE Congress on Evolutionary Computation, (Edinburgh, UK), IEEE

Press, 2005.

164

http://www.lxxl.pt

[177] S. von Mammen, Evolving artificial constructive swarms - Experimental models and

methodologies. Saarbrücken, Germany: VDM-Verlag, 2008.

[178] Y. Zeng, P. B. Dennis, and C. H. Jorge, “Multiagent based construction for human-like

architecture,” in AAMAS ’07: Proceedings of the 6th international joint conference on

Autonomous agents and multiagent systems, (New York, NY, USA), pp. 1–3, ACM,

2007.

[179] Y. Zeng, C. H. Jorge, and P. B. Dennis, “Swarmarchitect: a swarm framework for col-

laborative construction,” in GECCO ’07: Proceedings of the 9th annual conference on

Genetic and evolutionary computation, (New York, NY, USA), pp. 186–186, ACM,

2007.

[180] C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral model,” Com-

puter Graphics, vol. 21, no. 4, pp. 25–34, 1987.

[181] G. W. Litman, J. P. Cannon, and L. J. Dishaw, “Reconstructing immune phylogeny: new

perspectives,” Nat Rev Immunol, vol. 5, no. 11, pp. 866–879, 2005.

[182] M. Oilek and P. Klein, “Stochastic model of the immune response,” Modelling and Op-

timization of Complex System, pp. 15–25, 1979.

[183] F. Neelamkavil, Computer Simulation and Modelling. John Wiley and Sons, 1994.

[184] S. von Mammen and C. Jacob, “Swarming for games: Immersion in complex systems,”

in Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2009, Lec-

ture Notes in Computer Science, (Berlin-Heidelberg), Springer-Verlag, 2009.

[185] X. Yan, P. Yu, and J. Han, “Graph indexing: a frequent structure-based approach,” in

Proceedings of the 2004 ACM SIGMOD international conference on Management of

data, pp. 335–346, ACM New York, NY, USA, 2004.

165

[186] H. He and A. Singh, “Closure-tree: An index structure for graph queries,” in Proceed-

ings of the 22nd International Conference on Data Engineering, p. 38, IEEE Computer

Society Washington, DC, USA, 2006.

[187] A. Eldridge, A. Dorin, and J. McCormack, “Manipulating artificial ecosystems,” Appli-

cations of Evolutionary Computing, pp. 392–401, 2008.

[188] J. McCormack and O. Bown, “Life’s what you make: Niche construction and evolution-

ary art,” Applications of Evolutionary Computing, pp. 528–537, 2009///.

[189] S. Silva and S. Dignum, “Extending operator equalisation: Fitness based self adaptive

length distribution for bloat free gp,” Genetic Programming, pp. 159–170, 2009///.

[190] J. Giavitto and O. Michel, “The topological structures of membrane computing,” Fun-

damenta Informaticae, vol. 49, no. 1, pp. 123–145, 2002.

[191] G. Paun and G. Rozenberg, “A guide to membrane computing,” Theoretical Computer

Science, vol. 287, pp. 73–100, 9 2002/9/25.

[192] S. von Mammen, G. Hushlak, S. Novakowski, and C. Jacob, “Evolutionary swarm de-

sign,” Design Principles and Practices: An International Journal, In press. 2009.

[193] C. Jacob and I. Burleigh, “Biomolecular swarms: An agent-based model of the lactose

operon,” Natural Computing, vol. 3, pp. 361–376, December 2004.

[194] C. Jacob, A. Barbasiewicz, and G. Tsui, “Swarms and genes: Exploring λ-switch gene

regulation through swarm intelligence,” in CEC 2006, IEEE Congress on Evolutionary

Computation, 2006.

[195] C. Jacob, S. Steil, and K. Bergmann, “The swarming body: Simulating the decentralized

defenses of immunity,” in Artificial Immune Systems, ICARIS 2006, 5th International

Conference, (Oeiras, Portugal), Springer, September 2006.

166

[196] J. E. Boyd, G. Hushlak, and C. Jacob, “Swarmart: Interactive art from swarm intelli-

gence,” in Proceedings of the 12th annual ACM international conference on Multimedia,

(New York, NY, USA), pp. 628–635, ACM Press, 2004.

167

	Approval Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Related work
	Social insects, nests and the stigmergic script
	Collective construction processes
	Nest architecture

	From developmental models to complex systems
	Cellular automata
	Artificial chemistries
	L-systems
	Universal CDMs

	From developmental models to creative design
	Evolving art & design
	Integrating organic and functional design

	Evo-devo: development on multiple scales
	The evolution of evolution
	Gene regulation and embryonic systems
	Artificial neural nets and morphologies
	The spatiality of evo-devo models

	Complexity
	Categories of complexity: identifying complex phenomena
	The cause of complex behaviors
	Measures of complexity: quantifying different complex phenomena

	Completing the cycle: complex and constructive swarms
	Natural swarms are complex systems
	Flocking models
	Physical investigations into swarm systems
	Swarm art
	Evolving swarms
	Constructive swarm models

	Swarm grammars
	Basic swarm grammar system
	The swarm grammar
	SG agent behavior
	Pseudocode

	Exploring the basic swarm grammar model
	Changing the SL-system rules
	Changing the agent parameters
	Interaction with the environment

	The extended swarm grammar model
	Swarm grammar art

	Breeding swarm grammars
	Interactive evolution
	Immersive evolution
	Spatial breeding operators
	The swarm grammar gardener

	Automatic evolution

	Swarm grammar architecture
	Evolutionary setup
	Genotype and GA
	Fitness evaluation

	First results of bred SG architecture
	Fitness evolution and crossover points
	Architectural designs

	Ecological features of swarm constructions

	Swarm complexity
	Swarms as a model of complexity
	Analysis of flock formations
	Line formations
	Figure-eight formations

	Reverse engineering of (t)
	Evolutionary experiments
	Step function
	Sine function

	From investigations into the complex toward a new swarm model

	Swarm graph grammars
	A swarm graph grammar system
	Swarm individuals
	Computational complexity

	SGG examples
	Boids with SGGs
	Swarm grammars with SGGs

	Status quo of swarm graph grammars

	Summary & future work
	Chapter-based résumé
	Future work
	Swarm-driven architecture
	Working with swarm graph grammars
	Virtual walk-through of an interactive swarm design process

	Bibliography

