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Self-organized middle-out
abstraction of complexity
Sebastian von Mammen and Jan-Philipp Steghöfer

Automatic adaptive abstraction at the meso level can dramatically
reduce the complexity of multi-scale computational models and open
up a new way of tackling large-scale simulations.

Today, the inherent complexity of many man-made or natu-
rally occurring challenges—such as understanding the influence
of human interference in ecosystems or interacting biological
processes—is widely acknowledged. The ubiquitous network-
ing paradigm has highlighted the elaborate webs of interac-
tions and interdependencies between living beings, objects and
processes. Yet we still lack an algorithmic framework capable of
tackling the complexity of the world, in terms of representation
and computation. Thus, any step towards understanding—and
perhaps even predicting—the dynamics and emergent phase
transitions of complex systems would greatly contribute to the
advancement of science.

Present-day societal challenges that could benefit from this
kind of knowledge are plentiful, and can be found in fields rang-
ing from the life sciences to economics and engineering. To some
extent, the mathematical analysis of complex systems can pro-
vide some insights about the phase transitions that may occur
over time.1, 2 However, this approach requires a great deal of ef-
fort and does not scale well, becoming intractable as the number
of factors involved in a system increases. What is more, the in-
teractions that drive system transitions must be identified and
formalized a priori by the modeller.

In contrast, an ideal model building process should require as
little information as possible about a system’s actual behaviour.
It should be enough to only describe how the parts of a system
interact, without building in any assumptions about when feed-
back cycles might be triggered and snowball into fundamental
global system changes. In a model of this kind, the parts of the
system that interact according to sets of internal rules (and so
without any external, higher-level drivers of their collective be-
haviour) are known as ‘agents’.

Each agent in such a model is thus a self-contained entity with
its own individually accessible data, states and behaviours, often
expressed in the form of ‘if-then’ rules. The interaction sequences

Figure 1. (a) Three quad-copter agents situated closely together.
(b) Projection of the agents’ behavioural operators and their interre-
lations into the agent space. (c) Focus on the behavioural network.
(d) Introspection of the agents’ behavioural modules reveals hierarchi-
cally nested, lower-level operators and their connectivity.
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among agents and the traversal of their states in a computational
simulation correspond to the emergent feedback cycles and
phase transitions of complex systems. If we were able to de-
tect patterns that are precursors to phase transitions and patterns
that correspond to the system’s global dynamics, we could auto-
matically become aware of emergent phenomena.

To pursue this goal, in early 2011 we presented the design
of the self-organized middle-out (SOMO) concept,3 an approach
for automatic adaptive abstraction that is neither top-down nor
bottom-up, but instead operates at an intermediate, or ‘meso’,
level of analysis. Its foundation is an unsupervised learning
method that observes and abstracts processes which occur (that
is to say, emerge) during a computational simulation. An ab-
stracted process is no longer executed, but whenever its precon-
ditions hold, its observed side effects are enacted in the system.
Such automatically abstracted process descriptions promise to
help us understand, explain and compute complex phenomena
in simple terms. SOMO observes the simulation data and identi-
fies process patterns, ‘biased’ only in terms of its representations
(meaning that the way interaction patterns are represented by
SOMO can influence the kinds of patterns that can be detected
and so bias the result).

The patterns identified in this way are used to refine the com-
putational model that drives the simulation process being ob-
served. As the SOMO algorithm continues to observe and learn
the patterns that emerge from the simulation, it continually in-
creases the level of abstraction by introducing hierarchies of ab-
stracted patterns. It is hoped that such hierarchies will to some
extent coincide with the real-world conceptual boundaries that
we identify in natural systems, such as the subdivision of the
organizational complexity of animal anatomy into cells, tissues
and organs. Since such abstractions are inevitably subject to
noise and unknown conditions, we also introduce a confidence
measure that is associated with each abstraction.

Figure 1 shows a visualization of the behaviours and interre-
lations of a set of interacting agents. The individual operators
(agents), represented by spheres, are recursively nested to allow
for the hierarchical design of behavioural modules, while the
connections between inputs and outputs, represented by cones,
determine the flow of information at each hierarchical level.4

The creation of this visual modelling language was in part mo-
tivated by the need for a generic, hierarchical representation of
agent behaviours.

We envisage that a SOMO agent designed along these lines
could eventually be exposed to an arbitrary multi-agent sim-
ulation, and be capable of automatically inferring hierarchies

of patterns from the processes which it observes. Accomplish-
ing such a universal deployment of the SOMO concept would
require, among other things, a generic learning mechanism for
identifying arbitrary patterns,5 a universal approach to mea-
suring and comparing confidence values6 and a reinforcement
learning mechanism,7 as well as a comprehensive formalization
of representation and algorithms.

It has already been shown that current implementations
of SOMO are capable of pruning computational complex-
ity in multi-agent-based simulations and identifying emergent
processes.8–13 A broadly deployable, unbiased SOMO imple-
mentation would make it possible to compute models with large
numbers of approximate constants, such as in our perceived re-
ality. This would make it possible to integrate vast quantities of
scientific facts, across all levels of scale and scientific disciplines,
for consideration in simulations.

What is more, the SOMO concept need not be limited to vir-
tual simulations. It could also operate on top of a smart sensory
network to form a ‘SOMO net’. Adding sensory nodes with ef-
fectors would introduce the further capability of self-directed
inquiry. At that point, the SOMO net would turn into a self-
reflective machinery similar to the one developed by Lipson et
al.,14 which also acquired the converse capability of automati-
cally inferring complex, non-linear mathematical laws from data
sets by avoiding trivial invariants.15 A SOMO net enhanced in
this way would be able to autonomously perform observational
analysis and pro-active investigations to further accelerate the
generation of comprehensive and accurate scientific models.

In summary, the SOMO algorithm and SOMO nets hold the
promise of revealing hitherto unsuspected correlations between
processes. Such new insights, and the immense complexity that
SOMO can handle, would help to build the sustainable, pro-
gressive and evolving economic and ecological infrastructures
for tackling the major challenges humankind faces today. Our
current work on SOMO is focused on pattern detection in
observed interactions and the possibilities for propagating
knowledge about abstractions through the system. Once the im-
plementations of SOMO have reached maturity, we envisage
that research can shift to analysing how the learned abstractions
and features correlate with the behaviours we find in higher-
order emergent phenomena. Whether we will find striking sim-
ilarities, or instead discover these to be two completely different
forms of complex systems, remains an exciting open question at
this time.
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