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Abstract—This paper establishes a connection between object
tracking from a systems point of view and the job-scheduling
or job-shop problem. Often, surveillance areas cannot be fully
monitored by a set of smart cameras at any given point in time.
Decisions have to be made, which objects are to be tracked.
The computer vision aspects of object tracking have made
substantial strides which permits for elaborately planning the
monitoring jobs. In this paper, object tracking is handled as a job-
scheduling problem. As a result, tracked objects are considered
as scheduling jobs that rely on smart cameras as resources that
follow according tracking policies. The presented job-scheduling
approach is based on proactive quotations advertised by the
jobs. The main advantages of this algorithm are the avoidance
of negotiation chains and the acceptance of local non-optimal
solutions to benefit the overall performance.

I. INTRODUCTION

This paper introduces a job-scheduling approach for plan-
ning distributed monitoring jobs in smart camera networks.
Often, surveillance areas cannot be fully monitored by a set of
smart cameras at any given point in time. Therefore, decisions
have to be made, which objects are to be tracked. From the
point of computer vision, object tracking is a combination
of object detection and data association for assigning unique
object-IDs. Various detection techniques for pan-tilt-capable
smart cameras are known [1], [2]. Pre-evaluations have shown
that the HOG-Detector [3] can be used with pan-tilt capable
cameras as well. The correct assignment of unique object-
IDs can be handled, e.g., relying on object positions in world
coordinates if the object-density is low. More sophisticated
strategies like using artificial neural networks are also known
[4], [5]. As a consequence, our research hypothesis is: The
computer vision aspects of object tracking have made substan-
tial strides which permits for elaborately planning the moni-
toring jobs. In Figure 1 a distributed smart camera network
is depicted alongside moving objects and groups of objects.
In this paper, we consider these objects to be persons. At
the bottom of the figure, a specific scene is shown in more
detail. Person one and two diverge. Hence, smart camera (SC)
one is only capable of tracking one person or the other. The
obviously best solution would be, that SC1 tracks person one,
SC2 tracks person two and the idle camera SC3 would track
person three. The challenge is the distributed coordination of
this object-camera association. Each object or object-group to
be tracked can be considered as a job. In this context, the

smart cameras represent a limited available resource. Object
tracking can be considered as a general job-shop problem
with an arbitrary number of jobs in an arbitrary shop with an
arbitrary number of machines. In the following section, we will
define two objectives for object tracking. In Sections III and
IV object tracking is mapped to the job-shop problem which
is handled by a proactive and quotation-based scheduling
algorithm. The state of the art in Section VI gives an overview
of already known scheduling algorithms within this field. In
the evaluation in Section VII the performance of the introduced
scheduling algorithm is examined with respect to the defined
tracking objectives.

Fig. 1: Surveillance System consisting of several smart cam-
eras.

II. OBJECTIVES OF OBJECT TRACKING

The surveillance system is assumed to be one of the
third generation according to the classification by Valera et



al. [6]. This implies that the surveillance system performs
autonomously. In particular, our system acts in a decentralized
and self-organizing manner to execute its surveillance jobs.
If the system detects a critical event, it will be automatically
signaled to the user. The event could be, e.g., a conspicuous
trajectory which has been detected by trajectory-analysis. The
user is typically a member of the security staff working
in a security-control-room. The whole surveillance area is
displayed in form of pictograms on a huge multi-touch-table
which is used to interact with a distributed smart camera
network [7]. A simplified version of such an interaction-circle
is depicted in Fig. 2. Engineering distributed systems often

Fig. 2: Surveillance System

means optimizing the utilization of resources. However, our
experience in projects like CamInSens [7] and QTrajectories
[8] has taught us, that systems which do not reflect the
expectations of the users will not be accepted in practice. This
is why in this paper the objectives of tracking are specifically
defined in terms of user expectations. In our experience, two
tracking objectives are of major interest to the user. Firstly, it
should be possible to gain an overview of the system across
the entire monitoring area. In respect to object tracking, this
requirement means maximizing the number of detected objects.
Secondly, high-quality trajectories should be made available to
the automated trajectory analysis. This requirement can be read
as the maximization of the trajectory length of an arbitrarily
large set of the longest trajectories. Note, the maximization
of the average trajectory length is not an appropriate goal.
It would promote a given longest trajectory and dismiss all
shorter trajectories.
Formally, the objectives can be defined as follows, with Mobj

as set of all detected objects, Mtraj as set of all recorded tra-
jectories and maxe{Mtaj} as set of the ε longest trajectories.
In total, Equations 1, 2 formally describe our first and second
objective, respectively.

max(∣Mobj ∣) (1)

max(maxε{Mtraj}) (2)

In Fig. 3 hypothetical results of object tracking routines are
sketched. The y-axis represents the number of detected objects
or partial-trajectories. The x-axis shows the longest monitored
trajectory. An idealized algorithm for objective 1 captures the
whole surveillance area. In this case, the number of partial-
trajectories would equal the number of objects. An idealized
algorithm for objective 2 would record the longest available
trajectory and several partial-trajectories of other objects that
pass through the cameras’ fields of view as by-catch. Camera
systems equipped with tracking algorithms which are not
specialized on the described objectives will produce results in
the blue area. This blue area is caused by the internal memory
of computer vision techniques. If an object is detected in
sufficient short continuous time periods, most computer vision
algorithms will recognize the object as the object in the internal
memory and interpolate the trajectory. Thus a high-speed
panning camera head will record all objects and the longest
trajectory in its surrounding. This causes the intersection of
objective one and two, illustrated in Fig. 3 as the cone end of
the blue area on the crossing of the black dashed and the red
line.

Fig. 3: Sketched results for objective 1 and 2

III. MAPPING OBJECT TRACKING TO THE JOB-SHOP
PROBLEM

As mentioned in Section I each object or object-group can
be understood as an individual job an. Each smart camera can
be considered a resource ri. If a job an has allocated a set of
resources Rn to fulfill its tasks, it is denoted as an p Rn. This
set is a subset of all possible resources R that job an can use
to fulfill its tasks, an ⊸ R. To reduce the degree of resource
utilization, an object is only tracked by a single camera ∣Rn∣ =
1. In order to map the object tracking problem to the job-
scheduling problem a gantt-diagram has to be calculated for
each camera. In this diagram, the predicted residence time of
each object(-group) in its field of view is plotted, see Figure
4. A detailed introduction to the grouping of objects and the
estimation of the residence time can be found in [8]. In Fig. 4,
a case is presented in which person three could be tracked by
SC1, SC2 and SC3, and it is actually tracked by SC2. Denoted
as job-shop problem a3 ⊸ {r1, r2, r3} and a3 p {r2}, with a3
as tracking job for person three and r2 as resource SC2. In a
simplistic way, the tracking-performance of job an using smart
camera ri is defined by the trajectory-length for a specific
object within a given time period. Formally it is described by
pni (t). The accomplished work, or workload, of a job is defined
by Pni = ∫t p

n
i (t).



Fig. 4: Mapping trajectories to gantt-diagrams. The digits
represent the predicted workload respectively trajectory length.

IV. PQB-SCHEDULING

This section describes our proactive and quotation-based
scheduling approach. The algorithm is designed for self-
organizing distributed systems. The main aspects are the com-
pression of negotiation time and the mapping of enhancements
of the overall system performance onto local jobs performance.
Fig. 4 shows an example that elucidates these aspects. The
depicted initial situation can be described as follows:
a1 ⊸ {r1} with a1 p {}, a2 ⊸ {r1, r2} with a2 p {r1} and
a3 ⊸ {r2, r3} with a3 p {r2}. The obviously best solution for
assigning objects to cameras would be: a1 p {r1}, a2 p {r2}
and a3 p {r3}.
The performance pni of each job n on each camera i is assumed
to be 1. Hence, the workload Pni of each job is increased
by 1 at each discrete tracking time-step. A naive approach to
object tracking could rely on negotiation chains. In this case,
SC1 would have to hand over the tracking job concerning
person two to SC2. As a consequence, SC2 would have to
hand over the job of tracking person three to SC3. Due to the
arising interlaced hand-over-negotiation-chains, this approach
does not scale well for large networks. PQB-Scheduling avoids
these complex and time-consuming chains. In the following,
the compression of negotiation time and the mapping of
enhancements of the overall system performance onto local
jobs are described.

A. Proactive Broadcasting Quotations

The key idea for compressing the negotiation time is mak-
ing information about the conditions for changing resources
available to each job before it will be needed. At the same time,
the local dependencies of these conditions have to be resolved
automatically. This is achieved by proactively broadcasting
quotations Qni of those jobs an that occupy resources ri.
Quotations are constraints which have to fulfilled by another
job an′ in order to receive the resource ri from job an. In Fig.
5 the tracked persons and cameras are represented on the left-
hand side of the figure. On the right, the resulting associations
between smart cameras and jobs are depicted. We differentiate
between jobs that occupy a smart camera and those that are
only located on a smart camera. Only jobs that occupy smart
cameras are allowed to broadcast constraints. If a job receives

a constraint, it updates its quotation according to the local
mapping described in the following section IV-B.

Fig. 5: Compression of negotiation time by proactive quotation
broadcasts.

B. Local Mapping

Local mapping means the translation of possible global
system performance enhancements onto a local performance
enhancement. This local performance enhancement determines
the behavior of the corresponding local job. It adapts it-
self accordingly resulting in an efficient coordination process
without the need for a central planning instance. Consider a
surveillance scenario that started in the initial state depicted in
Fig. 4. For the ease of understanding, every workload-digit in
the gantt-diagram in Fig. 4 is assumed to be 7, but 0 will stay 0.
On the left-hand side of Fig. 6 the system workload over time is
depicted, whereas the right-hand side shows the local workload
evolution of job a1 occupying resource r1. If a person is
tracked by a camera, the system workload is increased by one
at each step. Time step (*) marks the divergence point of three
different scenarios. The solid line depicts the initial person-to-
smart camera assignment (Fig. 4). The black dashed line shows
the optimal possible system performance, that is reached if
a1 p {r1}, a2 p {r2} and a3 p {r3}. Thus, at time (**), the
optimized workload offsets the initial workload (via person-to-
smart camera assignment) by a positive increment ∆. On the
right-hand side of Fig. 4, PQB-Scheduling maps the possible
system workload improvement onto a local job-workload. For
instance, let’s assume that the performance of job a3 on
resource r3 is reduced to 0,5, this would automatically be
mapped to P 1

1 , see the red dashed line in the middle.

Fig. 6: Mapping of system workload onto local workload of a
single job.



In the following a quotation Qni is called sales quotation,
because only a virtual price has to be paid by a job aX to
receive the resource ri from job an. In this context, workload
is equivalent to virtual money. In other use-cases than object
tracking a job may need more than one camera, e.g. in multi-
view scenarios. Then the quotation could contain a constraint
to handover a dedicated smart camera to the offering job.
However, a sales quotation solely implies that if job an releases
its resource ri, the beneficiary job aX has to compensate for
the loss, see Eq. 3:

Qni = P
n
i = ∫

t
pni (t) (3)

If job an can migrate to an alternative resource ri′ , the
quotation has to be reduced by the predicted success on that
resource, see Eq. 4:

Qni = P
n
i −max

i′
{Pni′ } (4)

If job an has to ransom the alternative resource ri from an
offering job an′ the possible success on resource ri′ has to
be reduced by these costs. The maximum predicted reduced
workload of an on ri′ is the mapping function (Eq. 5):

max
i′
{Pni′ −Q

n′

i′ } (5)

The quotations to be broadcast by job an on resource ri are
given by:

Qni = P
n
i −max

i′
{Pni′ −Q

n′

i′ } (6)

The drawback of our approach is that it does not necessarily
result in a concluded negotiation. This drawback emerges
from the fact that each job assumes that it will be able to
acquire certain resources, although their availability cannot
be guaranteed—they might have been sold to another job
in the meantime. As a result, the maximum loss ∫t p

n
i (t) is

caused by releasing the resource ri in erroneous anticipation
of allocating resource ri′ . To reduce this risk, each job may
add a fee fn(i, i′) to the quotation which quantifies the risk of
an unsuccessful takeover. The broadcast quotation results to:

Qni = P
n
i −max

i′
{Pni′ −Q

n′

i′ − f
n
(i, i′)} (7)

C. Continuously Adapting the Tracking Objective

In Section II two tracking objectives, snapshots and auto-
mated analysis, were introduced. In this section, we assume
that the user of the surveillance system changes his corre-
sponding objective seamlessly. This is reflected by the pricing
of quotations. Small costs (low constraints) on the retrieval of
resources makes handovers more probable. A high price (high
constraints) decreases the probability of a handover. A proper
balance can, therefore, be realized by a weighting factor α(t).
The term α(t) in Eq. 8 depends on the trajectory length T . If
a snapshot is required, α(T ) will decrease with the trajectory
length, e.g. α(T ) = 1/T . To achieve long trajectories the price
must increase with the length, e.g. α(T ) = T .

Qni = α(T ) (P
n
i −max

i′
{Pni′ −Q

n′

i′ − f
n
(i, i′)}) (8)

D. Job Behavior

Each job broadcasts its quotation and receives a set of
quotations {Qni , ...,Q

N
I } = {Q

n′

i′ }. Based on these information,
jobs try to find the best resource. To reduce the risk of
deadlocks, circular relationships should be avoided. Therefore,
each quotation logs a history composed of participating job-
IDs n and resource-IDs i. A quotation is considered valid by a
job, if its job-ID is not part of the history, no single resource-
ID is included multiple times, and the current resource-ID is
not included either. Invalid quotations will be erased by each
job of his received set {Qn

′

i′ }. In the next step job an will rate
all alternative resources ri′ to explore the best one. To rate
an alternative resource, the costs Qn

′

i′ for the purchase of the
resource ri′ from job an′ must be subtracted from the predicted
workload:

Pni′,red = P
n
i′ −Q

n′

i′ (9)

This maximum value from the set of reduced workloads
{Pni′,red} quantifies the best achievable success on an alterna-
tive resource. The change to a different resource only makes
sense if this value is greater than the workload on the current
resource. If the change makes no sense, the job will send a
quotation by itself if it currently occupies the resource ri. A
formal description of the job behavior is given by Alg. 1.

Data: {Qn
′

i′ }, P
n
i , Pni′

Result: move to resource ri′ {void}
receive {Qn

′

i′ } messages;
check validity of {Qn

′

i′ };
forall the {Qn

′

i′ } do
calculate Pni′,red;

end
if maxi′{Pni′,red} > P

n
i then

initial transaction to resource ri′ ;
else

if an p {ri} then
send Qni -message;

end
end

Algorithm 1: Job decision process to stay on current re-
source or moving to an alternative resource.

For the ease of understanding we take a look at the example
in Fig. 4. An assumed classical priority-based algorithm would
assign the job with the highest performance to available
resources in descending order. So the the initial, undesir-
able situation persists. PQB-Scheduling solves this problem
using the local mapping function in Eq. 5: Job/Object a3
broadcasts Q3

2 = P 3
2 − P

3
3 = 8 − 7 = 1. Job a2 broadcasts

Q2
1 = P 2

1 − (P
2
2 − Q

3
2) = 9 − (4 − 1) = 6. Job a1 compares

P 1
1,red = 8 − 6 = 2 to P 1

idle = 0 and initiates the resource
handover.

V. GETTING REFERENCE VALUES FOR THE TRACKING
OBJECTIVES

As described in Sec. II the tracking objectives comprise an
overview of present objects in the surveillance area and the
maximization of trajectory lengths for automatic analysis. In
the following, two reference tracking approaches are presented,



which are specialized on these respective objectives, formal-
ized in Eq. 1 and 2. These reference approaches provide the
foundation for the evaluation in Sec. VII.

A. Snapshot of present objects

In the context of the following theoretical considerations,
we assume an idealized smart camera which executes pan-
tilt-functionality infinitely fast. As a result, the camera would
monitor its environment infinitely fast, yielding a closed-ring
panoramic image. A monitoring plan would not be necessary
in this case. For this reason, the number and location of all
persons within a specific distance (rFoV ) to a camera are
known. In Fig. 7 an according scenario is illustrated.

Fig. 7: Idealized smart camera with an infinite rotational speed.

B. Long Trajectories

To optimize the trajectory-length each camera follows these
three rules:

§1 Objects will not be not discarded.

§2 Objects can be added to an existing tracking-job.

§3 When a track ends, the process with the longest
continuous track, under consideration of §1 and §2,
can be continued.

In order to determine the maximum trajectory length, the gantt-
diagram presented in Section III is converted to a meshed
graph. Each event in the gantt-diagram (the starting and ending
of a track) is represented by a node. Initially, the graph is
full-meshed along the time-line. Recursions are not intended.
We assume the system is already tracking an object, e.g.
object 1 in Fig. 8. Subsequently, all edges which violate rules
§1,§2,§3 are withdrawn. The edges are weighted with the time
period between two nodes and multiplied with the number of
tracked objects. A longest path search on the graph yields the
scheduling plan. In particular, we find the longest path, and
thus the longest trajectory, relying on the well-known shortest
path algorithm from Floyd-Warshall [9], simply negating the
edge weights.

VI. STATE OF THE ART

Most scheduling algorithms for object tracking use greedy-
search for priority-based scheduling policies. Objectives are
often resource utilization, tracking quality (e.g. frames per
second) and energy consumption. One of the most popular
scheduling techniques is first-come-first-serve (FCFS). Objects
will be tracked depending on their first detection time. FCFS
often is used in state-based algorithms. DMCtrac [10] is a

Fig. 8: Conversion of a gantt-diagram to a meshed graph. The
red line shows the longest path.

state-machine consisting of four states: master, slave, search
and look. During the search-state the camera explores the
surrounding for track-able objects. Therefore the coverage is
optimized. The camera enters the look-state if a neighboring
camera will handover an object. A camera is in the master-
state, if it currently tracks an object. Entering slave-state,
the camera is in reserve-mode which means all objects are
tracked by at least one camera. The camera waits to be come
active. Qianqian et al. [11] use a state-machine to reduce the
energy consumption. The two-phase sleep scheduling protocol
(TPSS) [11] mainly bases on nodes sleeping or discovering
the surveillance area and nodes listening to the former nodes
or tracking if they become notified by an awakening message.
While this approach needs the location of a camera, a more
sophisticated approach is given by Ren et al. [12] which
does not require the position. The states are moving like a
wave through the network which shall ensure the detection
of each object. Qureshi et al. [13] and Costello et al. [14]
use non-ptz-cameras for multi-object tracking and ptz-cameras
to retrieve high-resolution images of single objects. In both
papers, the presented scheduling algorithm only affects the ptz-
cameras. Qureshi et al. use a weighted round robin schedule
in a highly sophisticated simulation of a simulated railway-
station. Costello et al. explore several techniques like FCFS
and earliest-deadline-first (EDF) using a small setup of two
cameras.
Apart from these classical algorithms some newly greedy-
algorithms have been established for priority-based scheduling
policies: objects with the most promising results will be
assigned to the cameras. This correlates to the second objective
defined in Sec. II. Rinner et al. [15] use vickrey auctions to
assign objects to cameras. Here, the vickrey auction can be
seen as a distributed variant of a greedy-search. The opti-
mization criteria is the tracking-quality. Dieber et al. [16] use
also learning approaches (ant colony optimization) to extract
most frequented ways, to improve the correct object handover
between cameras. Some algorithms focus on special aspects
like [17], which take into account that also cameras are needed
for recognition if an object disappears. On one hand, the PQB-
Scheduling algorithm can be considered as an advancement of
greedy-search. The jobs behave in a selfish, greedy manner
by improving their local workload. But on the other hand,



the proactive broadcasting and local mapping enables jobs to
restrain themselves (acceptance of local non-optimal solutions)
to improve the system-performance. In future work learning
approaches like Dieber et al. can be used to reduce failed object
handover between cameras by learning the fee fn(i, i

′

).

VII. EVALUATION

In this section, we present preliminary results regarding
the performance of the PQB-Scheduling algorithm. As a first
step, PQB-Scheduling will be compared to a classical priority
scheduling algorithm (greedy search). As a second step, its
capabilities with respect to the defined tracking objectives will
be evaluated. For our evaluation, we simulated a smart camera
network using the step-based simulation framework MASON
(MASON: Multi-Agent Simulator Of Neighborhoods... or Net-
works... or something...).

A. Evaluation of PQB-Scheduling vs. Priority-Scheduling

In this section, we demonstrate the performance enhance-
ment of PQB-Scheduling compared to a classical centralized
priority scheduling algorithm. The performance is assumed
to be constant over time, so performance- and workload-
enhancements can be used synonymously in this special case.
The priority scheduling algorithm maps jobs to resources, in
descending order with respect to the workload. The simulation
setup consists of six resources and six jobs. The performance
of a specific job on a specific resource type was chosen
randomly at the beginning of the simulation (performance-
setting). Both, the priority scheduling and PQB-Scheduling,
have been tested with the same 20 different performance-
settings. A scheduling process was considered completed, if
there has not been a change in the resources-job assignment
for 50 simulation steps. Figure 9 shows the results of the
comparison between priority-scheduling and PQB-Scheduling.
For both algorithms the number of steps until termination and
the relative fraction of the optimal performance are depicted.
The optimal solution of assigning jobs to resources has been
explored by brute force search a priori. The horizontal and
vertical lines represent the standard deviation. The evalua-
tion shows, that PQB-Scheduling reaches more than 99% of
the possible workload in contrast to the centralized priority
scheduling with more than 93%. On the one hand, PQB-
Scheduling is a decentralized algorithm which is highly robust
as it has no single point of failure. On the other hand,
its communication overhead is higher compared to priority-
scheduling. This is represented by the longer termination-time
of PQB-Scheduling.

B. Evaluation of PQB-Scheduling With Respect to the Defined
Tracking Objectives

In this section, we evaluate the performance of PQB-
Scheduling with respect to the tracking objectives as defined
in Section III. The snapshot described in Sec. V-A is used
to determine the maximum number of traceable objects. The
algorithm in Sec. V-B is used to get an impression of the
maximum trajectory length.
In Fig. 10 the initial evaluation setup is depicted: The surveil-
lance area is a grid of size 300 by 300 meter. It hosts 25 smart
cameras (blue rectangles) and 30 moving objects (red points).
The green circles represent the most effective tracking area

Fig. 9: Evaluation of Priority- and PQB-Scheduling

of each camera’s field of view, see [8]. The smart camera’s
field of view has a length of 50 meter and an viewing angle
of 30○. The distance between two cameras is 60 meters. Each
smart camera actively tracks one moving object at any point in
time. The moving objects follow the random waypoint model
introduced by PalChaudhuri et al. [18]. They move 1.4 meters
at each simulation step. Each simulation has a duration of 1000
steps and is repeated 10 times with different settings of object
movements.
Figure 11 shows the results of the evaluation. The y-axis
depicts the number of partial trajectories recorded throughout
the simulation. The x-axis represents the longest measured
trajectory. As expected, the Longest-Trajectory-Tracking al-
gorithm delivers the longest trajectory. However, the number
of partial trajectories captured by the Longest-Trajectory-
Tracking algorithm is relatively low compared to the results
by the PQB-Scheduling approach. This is consistent with the
design focus on the longest predicted trajectory while ignoring
of all other objects. The longest trajectory of PQB-Scheduling
with α(T ) = 1 (see Sec. IV-C) is about 14% shorter, but the
number of partial trajectories is about 22% higher. To increase
the trajectory length, alpha has to be increased according to
the recorded trajectory length. With α(T ) = T the longest
trajectory is only 10% shorter. To increase the number of
detected objects, α has to be decreased with the recorded
trajectory length. Therefore, it is set to α(T ) = 1/T . As
a result, Fig. 11 shows fewer partial trajectories than using
α(T ) = 1. This is not contradictory to the previous statement
that α(T ) = 1/T increases the number of detected objects. As a
detected object is not immediately discarded if it is temporarily
not detected. It is kept in the memory. If it will be detected
again within a sufficiently short time, it can be associated with
its previous detection. As a consequence, increasing movement
of the head of the camera reduces the number of partial
trajectories (see also the blue highlighted area in Fig. 3).
Overall, our evaluations show that PQB-Scheduling is adapt-
able to the tracking-objectives without the calculation costs of
the Longest-Trajectory-Tracking algorithm. It also induces a
small increase of movement of the camera’s head but that is
negligible compared to the stress exercised on the pan-tilt-drive
by a high-speed moving camera head.



Fig. 10: Initial simulation setup.

Fig. 11: Evaluation of PQB-Scheduling under constraints of
objective 1 and 2.

VIII. CONCLUSION

This paper introduced a proactive, quotation-based job-
scheduling algorithm (PQB-Scheduling) for object tracking in
large smart camera networks. PQB-Scheduling reduces the
negotiation time that arises during the organization of job-
resource pairs by making information for changing resources
available to each job before it will be needed. It resolves
local dependencies by proactively broadcasting quotations that
include information about the current job-resource assignment.
In contrast to priority-based algorithms like auctions, local
non-optimal solutions are accepted to enhance the system-wide
performance. Two competitive tracking objectives are defined
with regard to the users point of view. These are a snapshot-
view of all persons in the surveillance area and long trajectories
for automated analyses. In the evaluation it is shown, that
PQB-Scheduling retrieves very good results with respect to
the defined tracking objectives. Currently, we are planning to
test this scheduling approach in a laboratory demonstrator.
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