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Abstract—In this paper we present an approach to designing
swarms of autonomous, adaptive robots. An observer/controller
framework that has been developed as part of the Organic
Computing initiative provides the architectural foundation for
the individuals’ adaptivity. Relying on an extended Learning
Classifier System (XCS) in combination with adequate simula-
tion techniques, it empowers the individuals to improve their
collaborative performance and to adapt to changing goals and
changing conditions. We elaborate on the conceptual details, and
we provide first results addressing different aspects of our multi-
layered approach. Not only for the sake of generalisability, but
also because of its enormous transformative potential, we stage
our research design in the domain of quad-copter swarms that
organise to collaboratively fulfil spatial tasks such as maintenance
of building facades. Our elaborations detail the architectural
concept, provide examples of individual self-optimisation as well
as of the optimisation of collaborative efforts, and we show how
the user can control the swarm at multiple levels of abstraction.
We conclude with a summary of our approach and an outlook
on possible future steps.

I. INTRODUCTION

In order to benefit from an ever more complex technical
environment, its behavioural autonomy needs to increase ap-
propriately as well. Only then, it may serve its users without
requiring overwhelming amounts of attention. At the same
time, a technical system is expected to offer appropriate
access for controlling its individual components as well as
its global goals. The control of robotic swarms lends itself
well to elucidate this challenge: Ideally, the user would com-
municate his goals to the swarm as a whole, without the
need of micromanaging the individuals’ every parameter and
interaction. For instance, the user might navigate a flock of
flight-enabled robotic units towards a building and make them
work on facade maintenance, e.g. scrapping off paint, cleaning
windows, or trimming greenery. For this to work, a line of
command has to be established that links several levels of the
system’s architecture—the user needs to communicate target
and task to the swarm and the swarm individuals communicate
to coordinate their efforts. In addition, each swarm individual
needs to learn how it can contribute to the newly posed, global
goals, and how it can maximise its contribution.

The field of Organic Computing (OC) aims at translating
well-evolved principles of biological systems to engineering

complex system design [1]. It provides the theoretical under-
pinnings to quantitatively capture system attributes such as
their autonomy and robustness, or processes of emergence
based on measures of entropy. It also promotes complex
system design by means of a universal, observer/controller-
based architecture for adaptive, self-organising behaviour. With
respect to robotics, OC research initially focussed on failure
tolerant and robust hardware architectures, mainly applied to
multi-legged walking machines. The most prominent example
is the Organic Robot Control Architecture (ORCA) [2], [3].
In ORCA, two kinds of behavioural modules are discerned.
Basic Control Units (BCUs) implement the core behaviour
of the robot, rendering it fully functional with respect to the
range of possible tasks. In addition, Organic Control Units
(OCUs) observe and modify the BCUs’ configuration during
runtime. The separation between a system’s basic and its
extended functionality has proven itself numerous times—the
sympathetic and the parasympathetic division of the human
autonomous nervous system may serve as a famous biological
example.

Similarly to ORCA, we follow an OC approach to self-
organising robotic systems. In our approach, each agent in a
robotic swarm implements a multi-layered observer/controller
(O/C) architecture that allows for local, and in unison, also
in global optimisation of the swarm agents’ behaviours. The
user interface is explicitly included as one layer which accepts
modifications of the swarm’s and the individual agents’ goals.
We present the details of the multi-layered O/C architecture
of a single swarm robot individual and we explain how it
works in organising ensembles (Section II). In Section III, we
give an example of the reactive, self-regulatory capacity of the
architecture. Section IV highlights the longer-term evolution
of collaborative behaviour, and Section V demonstrates the
workings of the user interfacing layer of the architecture. We
provide links to related works in the respective sections, and
we conclude with a brief summary and an outlook on future
work.

II. THE OCBOTICS APPROACH

As mentioned in the introduction, our approach relies on
an architectural setup similar to ORCA. Therefore, we first
reinforce the link between our approach and ORCA and related



works. Next, we build on these analogues to preceding works
to detail our approach—from the perspective of a generic
architecture as well as of its concrete implementation.

A. From Single Adaptive Units to Teams

In ORCA, the Organic Control Units change the system
under observation and control (SuOC) based on periodically
issued health signals, i.e. messages from the Basic Control
Units indicating their functional working state. In contrast, our
approach observes all kinds of available data about the SuOC.
An according observation model specifies exactly, which input
data, configuration parameters, or internally computed results
of the SuOC are passed on to the observer/controller layer.
ORCA’s restrictive policy of data retrieval matches its fairly
conservative array of options for changing the system. Few
choices, however, drastically limit the system’s configuration
space and thus promote ORCA’s primary design goals of (a)
unearthing an optimal learning guidelines for adaptation (“the
law of adaptation”), and of (b) protecting acquired knowledge
against corruption and maintaining its validity and consistency
[4].

The ORCA approach is further limited to single, iso-
lated robots—information exchange with other robots or col-
laborative efforts among robotic teams were not envisaged
in the original architecture. Yet, it has been shown that
Observer/Controller-driven robots can increase their learning
speed imitating each other [5]. Local communication between
robots allows for establishing real teams that collaboratively
perform tasks such as the exploration of unknown terrain, and
that assign each other subtasks in a fair manner—decentralised,
without the need for global control [6], [7].

B. O/C Architecture

As suggested above, the OCbotics approach is founded
in a multi-level observer/controller architecture. An according
diagram is presented in Figure 1. It shows four interwoven
architectural levels. Level 0 denotes the system under ob-
servation and control, the base of the architecture located at
the bottom of the figure. Immediately above, level 1 retrieves
and evaluates data about the SuOC’s performance. Based on
this data, it changes the SuOC’s configuration in order to
optimise its performance, to adapt it to varying conditions
and needs. In particular, the SuOC’s parameters/behaviours are
optimised that may result in both good and bad performance
values with respect to a predefined goal (introduced by level
3). As a consequence, the best possible configuration set, or
behaviour, known to level 1 is exhibited by level 0 at any
given situation. True innovation is realised by level 2, one step
above in the multi-level architecture. Here, completely new
behavioural options are generated, simulated and optimised in
a sand-boxed simulation environment. Only if the new model
specifications satisfy all safety constraints considered as part
of the simulation process, they are eventually fed into level 1.

C. Modified XCS

Several studies in Organic Computing have emphasised
the adequacy of Learning Classifier Systems (LCS) as a com-
prehensive framework to support adaptive observer/controller
architectures, see for example [8], [9]. Already the first LCS
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Fig. 1. Multi-level Observer/Controller Architecture. The System under
Observation and Control (SuOC) at the bottom is observed and adjusted by the
O/C layers above. Their responsibilities are (in this order): reinforcement of
existing behaviour, innovating new behaviour, and interfacing local behaviour
with (a) user-set targets and (b) cooperative units’ goals.

presented in 1975 combined basic rule-based reactive be-
haviour with an evolutionary component to evolve and improve
the rule base [10]. With the introduction of accuracy-based
reinforcement of classifiers, LCS research reached an impor-
tant milestone in 1995 [11] (for an overview of LCS research
and ongoing research topics see, for instance, [12]). In the
context of safety-critical Organic Computing applications, the
latter extension to LCS, also referred to as XCS, was further
modified to suit the multi-layer O/C architecture outlined
above. In particular, three modifications were implemented:
(1) The use of continuous value ranges as promoted in [13],
(2) the generalisation of the closest fitting existing rule in
layer 1 instead of the generation of a new rule, in case
that a given situation is not covered by the existing rule
set (“widening” covering mechanism), and (3) “sandboxed”
offline learning in layer 2 to ensure safety and maturity of
new rules/behaviours. In addition, one can track the impact of
those triggered rules effecting changes identical to the newly
generated rule and, thereby, building up trust in new rules
before they are considered by themselves.

In the remainder of this paper, we show preliminary
examples of the OCbotics approach each of which works at a
different level of the presented architecture. In particular, we
show an example of reactive behaviour of a particular system
under observation and control (layer 0) and we elaborate on its
integration with layer 1 (Section III). An instance of evolved
behaviour (layer 2) in a collaborative swarm robotics setting
is presented in Section IV. Its communication across a swarm
of agents as well as the interface mechanism with the user of
the system, i.e. layer 3, is explained in Section V.

III. SELF-ORGANISED AERIAL ROBOTIC CONSTRUCTION

Tensile structures play an important role in post-modern
architecture [14] and they promise to become increasingly im-
portant still considering their unique versatility and flexibility
in combination with advances in technologies in built material
and construction methods [15]. They have also been subject



to Aerial Robotic Construction (ARC) research [16], [17] due
to their light mass, load-carrying ability, and their ability of
connecting large distances. Quadrotors have been identified as
vehicles apt for aerial manipulation mainly due to their robust
flight behaviour and their hovering capability [18]. In [17], pro-
totypic building primitives such as single and multi-round turn
hitches, knob and elbow nots as well the trajectories resulting
from their concatenation have been discussed. Different from
pre-calculating trajectories, we have been working on a self-
organising approach to building tensile structures. We detail
our approach below, followed by elaborations on its OCbotic-
specific features.

A. Stigmergic Web-weaving

Typically, a spider weaves its web by itself [19], [20]. Com-
plex web constructions, however, may require collaborative
entanglement and tightening of ropes. This can, for instance, be
achieved by synchronised flight through pre-calculated control
points to cross the ARC quad-rotors’ trajectories. Alternatively,
the swarm individuals may coordinate themselves relying on
local stimuli, like social insects do [21], [22]. In this section,
we present a first such locally motivated ARC experiment1.
Currently, it involves only one quad-rotor that tightens a rope
around a tent pole’s four suspension lines, see Figure 2.

1) Technical Setup: For our lab-experiments, we currently
employ the AR.Drone Parrot 2.0 quad-rotor system. It is
connected to a standard PC via WLAN. The PC retrieves
the sensory data of the quad-rotor and issues the according
navigational instructions. We make use of the quad-rotor’s
VGA camera that has a 90◦ field of vision, built-in image-
processing capabilities such as marker recognition, and the
estimates of its ultrasonic distance sensor. As this sensor and
a downward directed camera are used by the quad-rotor to
stabilise its flight, we attached a coil at the top of the vehicle
and unwind the cord through an eye at its back. We interface
with the quad-rotor relying on Nodecoper.js and the node-ar-
drone module [23].

2) Behavioural Definition: The quad-rotor behaves only
based on locally available sensory information. In particular, it
implements the reactive behaviour schematically summarised
in Figure 3: After taking off, it searches for a orange-green-
orange marker, which is one of the designs that the vehicle
is programmed to recognise automatically. It keeps spinning
right until it eventually finds one. If the distance to the marker
is less than a certain threshold (1m worked quite well), it drifts
left. As a consequence, the detected marker moves outside of
its field of view. At this point, the quad-rotor has surpassed
the previous marker and looks for the next one, which is
attached to the next suspension line (also consider Figure 2).
The distance to the next marker along the circumference of
the pole is greater than the given threshold. The quad-rotor
can go straight ahead, if the tag is within the right-hand side
of its view (this condition is labelled ‘tag in area’ in Figure
3). Otherwise, it needs to shift a bit to the left.

B. Adapting Reactive Behaviour

Programmatically, the quad-rotor’s behaviour (Figure 3) is
represented as a set of simple if-then rules. As such, they can

1Please find an accompanying video at http://youtu.be/tZNeL-n1dDE.

(a)

(b)

Fig. 2. (a) The quad-rotor hovers clock-wise around a pole that is suspended
by four lines. It tightens a rope (green, dashed) along the suspension lines.
(b) A schematic side-view extracted from a photograph, highlighting the
orientation of the markers pinned to the suspension lines.

08.07.2014 4,5h
• Video ohne Faden
• Verbesserung der Spulenbefestigung (besseres Abwickeln)
• Code refactored

09.07.2014 1h
• Video mit Faden

10.07.2014 1,5
• Besuch von Airbus
• Vorführen der Navigation ohne Faden und mit Faden

Fig. 3. Weaving Behaviour of a Self-organising ARC Quad-rotor. It circles
clock-wise around a pole, tightening its thread around suspension lines tagged
with directionally oriented markers.

be easily subjected to standard LCS implementations and its
extensions such as XCS (Section II-C). Hereby, those rules
with the best prediction accuracy are reinforced to gain the



greatest fitness over time, yielding the best possible behaviour.
In this way, the quad-rotor of the ARC example would learn to
query the proper sensors at the right times to react in the best
possible way, if the behavioural rule set was enriched with ac-
cording alternatives. At the interface of level 0 (the SuOC) and
level 1 (the reinforcement learner), the measure of success can
typically be calculated based on locally available information
such as the distance flown or the number of recognised tags.
For good learning results, the parametrisation of the behaviour
should be realised at a rather high level, focusing on the
selection of queries and operations and only cover small ranges
of variability. Potential benefits of level 1 learning would not
only be optimisation of one particular learning pattern but also
behavioural rules that adapt to hardware particularities such as
deviating sensory intake or imbalanced motor control.

IV. COLLABORATIVE AERIAL ROBOTIC MAINTENANCE

At level 2 of the multi-layer O/C architecture, behaviours
can be created by means of generative model building ap-
proaches such as evolutionary algorithms and be optimised
for deployment by means of simulations. As a first OCbotics
prototype of offline level 2 generation and optimisation, we
have evolved quad-rotor behaviour for collaborative surface
maintenance. In this section, we introduce the challenge of
optimising collaborative surface maintenance. We detail the
technical setup we relied on for both simulation and optimi-
sation and we describe the behavioural options of each swarm
individual. Afterwards, we draw a very rough picture of the
evolutionary experiments that we have run, and we discuss the
interactions between layer 2 and 3 for propagating successfully
bred behaviours that require synchronisation between the in-
dividuals in an OCbotics swarm.

A. Collaborative Facade Maintenance

Consider the facades of large office buildings as examples
of vertical surfaces: They are subject to cleaning [24], [25],
trimming greenery [26], and other maintenance tasks. As in
the previous example, these tasks might benefit more from
collaborative efforts than only in terms of efficiency. For
instance, fast growing greenery might require one machine to
bend, the other one to cut a branch. Equally, during cleaning,
several hovering robots might have to join to build up sufficient
pressure to remove persistent dirt. Of course, the respective
operations might also be split into several procedures per-
formed by individually optimised machines. In this example,
however, we only consider the most modest objective, namely
collaborative efficiency.

1) Technical Setup: The technical setup of our level 2
experiment comprises (a) a simulation environment to calculate
aviation and robotic mechanics, and (b) a machine learning
environment with a generative model component and an op-
timisation component. Figure 4 depicts the software modules
that we have used in order to simulate collaborative quad-
copter swarms. The Robot Operating System (ROS) acts as
a hub for these modules. It provides a high-level software
interface for programming and communicating with different
kinds of robots [27]. Gazebo is a simulation engine that
natively integrates with ROS, offering 3D rendering, robot-
specific functionality and physics calculations [28]. Thanks
to a ROS driver for the AR.Drone Parrot quad-rotor [29],

2 Related Work

Figure 2.1: Schematic of how the modules in our simulations work together.

One of these is the ardrone_autonomy module [22], which encapsulates the driver
for Parrot’s AR.Drone 2.0 quadrotor and provides a ROS interface for remotely
controlling it. Using exactly the same interface, Huang and Sturm have created a
Gazebo plugin to simulate the flight behavior of this quadcopter [15]. The identical
set of control commands and telemetry reports allows for in-place switching be-
tween simulation and real hardware once the control software is considered mature
enough. Our robot controller uses this interface provided by ardrone_autonomy to
communicate with the simulator plugin or a real AR.Drone. The interconnection
of the involved modules is illustrated in Figure 2.1.

We chose this combination because, while giving us a su�ciently realistic simula-
tion environment for genetic programming, the interface-compatibility of simulator
and driver will make it easier to verify control programs with physical robots in
the future.
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Fig. 4. Interwoven Simulation Modules. The Robot Operating System
integrates various software components to simulate quad-rotor swarms. In
particular, we control the robot using a common ROS-based instruction set
that is understood by both the Gazebo simulation software and its quad-rotor
simulation plugin as well as a ROS driver that steers the actual quad-rotor
hardware.

and thanks to a Gazebo plugin that simulates the quad-rotor’s
behaviour based on the very same ROS-based instruction set
[30], any of the generated behaviours immediately work in-
silico and in-vivo. For the generation of novel behaviours as
well as for their evolution, we decided to use the Evolving
Objects framework (EO) [31]. EO is an open framework
for evolutionary computation featuring an extensible, object-
oriented architecture, and turnkey implementations of genetic
algorithms, particle swarm optimisation, and genetic program-
ming.

2) Behavioural Definition: Our approach to collaborative
facade maintenance is inspired by nest construction of social
insects [21]. Each individual works on a small part of the
construction proportional in size to the insects’ physique. Ac-
cordingly, each simulated quad-rotor divides the target surface
in a grid, each cell measuring 2 by 2 metres, its field of
view covering six cells, two rows of three (Figure 5). This
partitioning scheme is a result of the size of the quad-rotor
itself and its perceived area from a vantage point close to the
surface. Without loss of generality, a dirtiness value is assigned
to each cell that indicates whether it needs to be worked on or
not. The quad-rotor’s internal state, i.e. its remaining battery
life, as well as the configuration of dirty and clean cells that
reveals itself in front of it trigger specific actions. The quad-
rotor may return to the base station to recharge. It may fly to
one of the cells in its field of view and clean it. Alternatively,
it may move to one of the four neighbouring vantage points
to inspect the respective neighbouring batches of cells.

B. Evolving Collaborative Behaviour

Figure 6 captures the behavioural options of a quad-rotor
in the context of facade maintenance. Any activity is initiated
by the decision-making component, subsequent events guide
the quad-rotor back into the decision-making process. Again,
the behaviours can easily be written as if-then rules which
ensures the coherence and simplicity of interfacing across the
layers of the O/C architecture. Notice that in this model, quad-
rotors cannot stop working. Instead, the whole simulation is
terminated after a given amount of time. During this period of
time, the decision-making component determines the success
of the simulated swarm. We generate an according program
tree using Genetic Programming [32]. In this paper, we refrain
from presenting the evolutionary approach in all detail, but



3 Methodology

(a) The view of a robot. The gray translucent pyramid shows the field of view of the
ARU on the bottom right. The six green, labeled task cells are considered visible
to the robot from its position, while the red ones are not.

(b) A part of the vantage point grid. The green spheres are the vantage points, the
red arrows illustrate neighbor relations between them. For two exemplary vantage
points, the respective view frusta are also included.

Figure 3.2: Cell slots in a robot’s view and vantage point grid.
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Fig. 5. Cell Grid for Surface Maintenance. The quad-rotor divides the building
facade in a grid of cells. The individual cells represent the immediate target
areas to work on. Their states of cleanliness also provide the local cues for
decision-making, i.e. for approaching an individual cell or to moving to another
vantage point.

we want to convey its basic mechanisms and how it ties into
the OCbotics approach. The generated decision program may
conditionally deploy the operations outlined in Figure 6, and
introduce references or primitive values as their parameters.
The resultant behaviour trees are considered the individuals
in an evolutionary optimisation cycle, and thus their fitnesses
(penalty, a.o., for remaining amount of dirt) are calculated
in according simulation runs, and they serve as an important
criterion for selecting ancestors for subsequent generations of
individuals (deterministic tournaments).

We ran experiments featuring two or four quad-rotors, or
“aerial robotic units” (ARUs), working in parallel for 900 to
1500 simulated seconds. Their individual base stations were
distributed randomly in rectangular area sharing two sides with
the target surfaces as seen in Figure 7. Population sizes varied
from 30 to 100 individuals, the generational cycle was repeated
between 10 to 50 times—depending on the work load of an
individual simulation which was mainly determined by the
number of interacting agents and the simulated time. One of
the best individuals in an experiment that started from a set
of previously evolved specimen worked as follows: Having
arrived at a random cell of the target surface, work through
single rows of vantage points from right to left. If the border
of the target surface is reached, return to the base station and
approach the target area again. It turns out that this behaviour
proved significantly faster than two decision programs we
manually designed before running the evolutionary process:
One of them stochastically selecting dirty cells and considering
the remainder of the battery before taking action (low batteries
are also penalised by the fitness calculation), the other one
letting the quad-rotor follow the dirt gradient exhibited in the
perceived 3 by 2 cell matrix.

C. Sandboxed by Layer 2, Letterboxed by Level 3

Level 2 is capable of generating and evolving collaborative
behaviour such as the one described above. Initially, the novel
behaviour does not have any impact on the system under
observation and control. One may say the innovation process
is encapsulated in a sandbox and runs completely separated

3 Methodology

Figure 3.5: High-level state diagram of an agent. Edge labels describe the conditions
triggering state transitions. Elliptical outlines denote longer-term states,
while the square outline marks a momentary state of decision making.

in our case by the simulation environment. In our experiments, once a stopping
criterion is met, the simulation is simply terminated. In a more realistic scenario,
a controlling program or facility might send an overriding radio signal causing the
ARUs to return to their base stations and shut o�, for example. Alternatively, the
agents might be deployed in a perpetual work scenario that depends on sustained
work e�orts, such as surface cleaning or lawn mowing.

The centerpiece of the model and the main subject of investigation in our ex-
periments (Chapter 4) is the decision function fAg. The content of this decision
function is developed using genetic programming, the details of which are explained
in the following sections.

3.3 Evolution

This section explains the details of the evolution mechanism used in this thesis.
It shortly repeats the general idea of genetic programming and then goes into
the specifics of our model. We first clarify some terms used in the remainder of
the section and present the genetic representation of our individuals. Then we
explain the general layout of the evolution cycle and the details of the selection
and evaluation mechanisms in use. The section is concluded by a minute discussion
of the genetic variation operators in place.
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Fig. 6. Options of Activity of a Facade Maintaining Quad-rotor Agent.
Any activity—working on one of the cells ahead, flying to the base station
to recharge, or moving to a neighbouring vantage point—is initiated by the
decision component which considers the agent’s battery state and the surface
configuration in its field of view.

3 Methodology

With these simplifications in place we can focus on the actual problem of interest:
producing e�ective and e�cient global swarm behavior – that is, working the whole
surface given homogeneous local work loads, and assuming the need for transport-
ing centrally maintained resources – with a simple decision function relying only
on local knowledge.

3.1.4 Scenario Start Configuration

Figure 3.4: Placement area for robots.

At the beginning of a simulation, each
cell is assigned a random dirtiness
value, normalized so that the average
dirtiness value of all cells is 0.5. All
ARUs taking part in the simulation are
placed somewhere on the square de-
scribed by the two halves of the task
surface as illustrated in Figure 3.4. The
ARUs are spread apart to prevent un-
necessary collisions when they take o�
and approach the task surface.

Each robot’s starting location also
serves its base station to which it must
return to recharge its battery, and all ARUs in one simulation use instances of the
same controller, thus producing a homogeneous agent population. More details
about the concrete initial configurations are presented out in the context of the
experiments in Chapter 4.

3.2 Agent Representation

In this section we discuss the logical representation used for the robotic actors in
our model. We describe how our agents perceive their environment conceptually,
how they can react to it and how and when they change their state.
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Fig. 7. Simulated Environment for Collaborative Surface Maintenance
Evaluation. Two flat surfaces are presented to the quad-rotor swarms as target
area which needs to be cleaned. The base stations of the swarm individuals
are randomly placed in the rectangular area between the surfaces.

process, offline. At the same time, collaborative behaviour
needs to be communicated, if it is required to be performed by
all individuals of a swarm in order to function in a coordinated
way. The observation of Layer 2 by Layer 3 has to detect such
impending necessary changes and broadcast it to all the other
members of the swarm. Similar to an auction in multi-agent
systems [33], the best broadcast solution, i.e. decision program
and fitness value, would be implemented. As an extension,
any population-based simulation and optimisation approaches
could be distributed among the OCbotics individuals and their
evolution be concerted across the whole swarm (for distributed
population-based optimisation see, for instance, [34] and [35]).
Especially in situations with imbalanced computational loads
across the swarm, following a smart distributed optimisation
strategy could yield an important advantage.

V. USER-GUIDED SYSTEM BEHAVIOUR

In our last example, we demonstrate an early prototype of
the user interfacing component of layer 3 of the multi-layered
O/C architecture that drives the OCbotics approach. As hinted
at in Figure 1, layer 3 mediates the user’s goals vertically
to all system layers below and horizontally to all OCbotics
individuals of the system.



Fig. 8. OCbotics Swarm Modelled in Unity3D. The Unity3D environment al-
lows us to integrate complex simulation models and immersive user interaction
hardware such as motion-based input controllers and head-mounted displays.

A. Immersive Swarm Control

The preceding examples of web-weaving quad-rotors in
Section III and collaborative surface maintenance swarms in
Section IV implement spatial operations. To some extent, both
culminate in the tandem of local cues and resultant trajectories.
As a consequence, defining spatial targets for arbitrary subsets
of a swarm deems to be an adequate task generalisation for
a first prototype of a level 3 user interface. A “human-in-the-
loop” system design forces one to clearly define the level of
influence a user may exercise versus the level of autonomy the
system may keep [36]. Therefore, we elaborate on the different
levels of access implemented by our prototype right after we
outline its technical foundation.

1) Technical Setup: Focussing on interactivity, we decided
to utilise the turnkey infrastructure of one of the comprehensive
game and simulation engines. In particular, we decided to
use Unity [37] as it provides a very shallow learning curve
(compared to its competitors) while still providing a powerful
coding infrastructure that allows to write custom plugins in
C# and which offers a wide range of third-party plugins in
a dedicated asset store. Aiming at the implementation of a
high-level interface, we tapped into these resources as much
as possible and bought, for instance, commercial code bases
for simulating flocking behaviours [38] and automated path
finding in three-dimensional environments [39]. We further
built on Unity demos and plugins that support current hardware
solutions such as the Oculus Rift head-mounted display [40]
and the Razer Hydra motion controller [41]. In combination,
these hardware solutions allow us to emulate an augmented
reality scenario for controlling an OCbotics swarm. Figure
8 shows the model of an OCbotics swarm being setup in
Unity3D. The light green circles depict waypoints computed
by the path finding algorithm, the dual-view perspective at the
bottom-left corner of the screen indicates the current view of
the attached head-mounted display. The bottom-right window
displays the library of components used for modelling the
scene, the list at the right-hand side of the screen shows the
components that already constitute the scene.

Fig. 9. Simulated Immersive Swarm Control. One of the authors is immersed
into an OCbotics simulation. She navigates through movement of her head
and using a continuous joystick of the two motion-controllers. The pair of
controllers empowers her to (literally) draw new spatial relations between the
simulated objects, e.g. to set new targets for subsets of the swarm.

2) Behavioural Control: Our user interface prototype im-
merses the user into a virtual reality shared with the OCbotics
swarm. In the long run, the simulated swarm is meant to make
way for a real one, and the virtual reality for an augmented
reality. Already, the user can observe the whole swarm or
a subset tracking it with a virtual camera that follows in a
distance and which aims at the centre of the set of selected
individuals. The user can exercise control on any subset of
the swarm, hence he may direct flocks of individuals or single
individuals at a time. The interface provides all kinds of state
information about the selected individuals, such as (averaged
and variance of) remaining battery life, current target, current
trajectory, and currently perceived neighbours. The user may
switch between individuals and greater subsets of the swarm by
simply selecting them. Next, he may change the target of flight
or even individual control points along the way. Of course, he
may also change the parameters of the selected individuals
such as their urge for alignment. In our prototype, the user is
immersed into the scene of the simulated swarm (see Figure 9)
so he can easily trace its activity, understand its relationship to
the current target and to obstacles, and to rectify it, whenever
necessary.

B. Semi-automated Control between Exploration and Ex-
ploitation

The presented simulated prototype for immersive swarm
control shows how high-level goals such as setting a new
target of the swarm can be communicated in an intuitive way.
Differentiated selection of swarm individuals as well as setting
local attributes, such as local targets or local waypoints, are
simple yet clear examples of moving from abstract, high-
level goal descriptions (target/swarm) to specific low-level
commands (trajectory waypoints/individual). For a swarm and
and individual to reach the specified targets or waypoints,
complex calculations have to be performed. In the given
example, the need to avoid obstacles and to find optimal paths
as well as the coordination among swarm individuals on their
way are outsourced to third-party plugins [39], [38]. In the
general case, also considering other tasks communicated on
layer 3, the necessary behaviours could evolve in sandboxed
simulations (layer 2) and be optimised based on local perfor-



mance feedback (layer 1).

VI. CONCLUSION

In this paper we have introduced OCbotics as a compre-
hensive approach to designing swarm-based, self-organising
robotic systems. OCbotics is driven by a multi-layered ob-
server/controller architecture that allows to optimise and adapt
an adaptable system. Adaptation is required in order to main-
tain or increase the performance exhibited by the system under
observation and control—either by optimising or extending ex-
isting behaviours, or by innovating, i.e. generating, simulating,
and optimising novel behaviours. The performance, in turn,
is measured in terms of user-defined goals which may also
change over time. We have presented three different projects
that operate at different levels of the discussed architecture:
Web-weaving quad-rotors with an emphasis on optimised local
reactive behaviour, evolution of collaborative behaviour to
efficiently work on surfaces, and an immersive user-interface
for setting and changing user-defined goals. While the three
examples slightly vary regarding their applications, they are
connected through the common themes of self-organisation,
rule-based behaviour, and adaptation, and of course, the O/C
architecture to host them all. With the pieces of the puzzle
at hand, the next obvious step is to put them into place, to
forge the software components into one (if heterogeneous)
code base, to connect the layers of the architecture, to develop
a repertoire of recombinable goal definitions, and to transfer
the partially still virtual implementations of all levels onto an
actual OCbotics infrastructure.

REFERENCES

[1] C. Müller-Schloer, H. Schmeck, and T. Ungerer, Eds., Organic Comput-
ing - A Paradigm Shift for Complex Systems, ser. Autonomic Systems.
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