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Introduction

In evolutionary robotics methods of evolutionary computation are applied
to evolve robot controllers [1]. Evolutionary robotics is also our method of
choice in the EU-funded project flora robotica [6, 8], which pushes research
towards the evolution of a broad variety of artifacts and contraptions [4]. We
are investigating how a distributed robot system and a group of biological
plants can be tightly coupled to generate synergies and finally result in a
bio-hybrid system. We want to create a co-dependent and self-organized
system with closely linked symbiotic relationships where plants support
robots, for example, by providing sca�olding and robots that direct plant
growth towards desired areas. In addition to plant growth there is also
plant motion which is often ignored, probably due to the fact that the
motion of plants is slow compared to that of animals. It can be di�cult
sometimes to distinguish between a plant’s motion and growth as both
happen concurrently and usually in similar ways. They can di�er, however,
fundamentally in terms of time scales. Another important di�erence is
the fact that motion can be reverted while growth is mostly permanent.
Besides plant growth we also want to harness plant motion in our robot-
plant systems.
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In evolutionary robotics, the evaluation of an individual’s fitness is a critical
and often costly task (time, wear of robots, etc.). This is true for both
options, evaluating robot controllers in simulation or via so-called embodied
evolution with actual robots in hardware [17]. The potential speed-up of
using simulations is diminished by the so-called reality gap problem [9].
Robot controllers evolved in simulation might perform poorly in reality
due to imperfectly simulated features of reality. Still, the evaluation of
a candidate controller might be performed within a matter of seconds.
For example, in embodied evolution of an object avoidance controller the
feedback of hitting an object can be instantly obtained from the robot’s
sensors and would immediately indicate a failure.

In this work, we apply artificial evolution to robot-plant bio-hybrid systems.
An intuitive and simple task in this context is controlling plant growth
and motion towards light (phototropism). Control here means to direct
the plant tip to a certain position by switching lights on and o�. It is
obvious that in the case of the embodied evolution approach the feedback
from the plants during an evaluation would be very slow. For example,
the common bean plant (Phaseolus vulgaris), which is actually considered
a fast grower, grows an average of 2cm to 3cm per day during an early
growth stage. Hence, an evaluation period of at least three days would
be required to grow the plant tip to reach a target initially 9cm away.
Instead, we consider the option to priorly control plant motion. According
to our experiments, bean plants bend towards a light source with a velocity
of up to 4.4mm/min. This is considered relatively quick feedback and
su�cient for evolving controllers in an embodied approach. Accordingly,
the objective of our experiments is to maximize the plant motion within
a given period of time by switching between di�erent light settings. The
resultant plant movement behavior could be useful, for instance, as a signal
to draw the attention of passers-by in public spaces or to implement facades
that dynamically provide visual protection. In this paper, we present our
approach to create a simple growth-model of the common bean based
on empirically obtained data. We then use the model as a simulation
to evolve closed-loop controllers that maximize the plant’s motion and
grow the plant’s tip to three di�erent targets. For the future, we plan to
investigate how well these evolved controllers work on real plants (reality
gap), means of embodied evolution for plant motion control, and augmented
user interfaces to e�ectively design and utilize bio-hybrid systems.
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Related work and context of this research

Besides the above mentioned relation to evolutionary robotics [1] and
embodied evolution of things [17, 4], our work is also related to e�orts
in plant modeling. In this paper we present an early preliminary plant
modeling approach focused on the plant tip only. There is, however, a
straightforward, simple incremental approach to extend the model by
separating the plant logically into several segments. That is the idea of
organizing the individual segments of a virtual plant stem in transformation
hierarchies. This approach is similar to preceding works, for instance, for
retracing motion dynamics of trees due to wind gusts [19]. As a result of
the hierarchical organization, changes introduced to one segment of the
plant a�ect all those segments lower in the hierarchy, or closer to the tip
of the plant. In L-systems [10], which represent a wide-spread approach
to model plant growth, a set of production rules is iteratively applied
(in parallel) to subsume symbols of a character string which, in turn, is
geometrically interpreted at each step of the simulation. The geometry
of a tree and its variation have recently been inversely computed from
polygon meshes of actual trees and derived abstract branching trees [19, 13].
Allowing the individual nodes in such an abstract tree to act as autonomous,
reactive agents [18]. These agents, in turn, might be attracted to light
sources, which provides a simple approach to model dynamic plants that
react to environmental stimuli. To the knowledge of the authors, swarm
grammars represent the first such implementation that also integrated the
branching behavior of L-systems [15]. In fact, phototropism and reactions
with the environment were among the first experiments conducted with
this agent-based L-system extension. Considering the sti�ness of each of
the connected stem elements of the virtual plant in combination with the
urge towards a light source, we can e�ciently approximate the bending
motion of the plant [5].

The plant growth–motion model and the evolution of controllers presented
in this paper are an e�ort within the interdisciplinary project flora robotica.
The project creates and investigates mixed societies of robots and natu-
ral plants and brings together scientists from plant science, architecture,
zoology, robotics, and computer science. The general idea to automate
gardening tasks has been addressed before [3]. Also the automation of
agriculture has been studied [11]. However, our objectives go beyond the
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idea of mere automation. Our motivation in flora robotica is to develop a
bio-hybrid system that assigns equal roles to plants and robots and creates
synergies between them.

A natural plant can grow structures and sense environmental features, while
robots can impose artificial stimuli on the plant and add to the plant’s
sensing and decision-making capabilities. That way we use robots to trigger
artificial growth. The idea is to leverage natural adaptive behavior in
plants [7] to extend the capabilities of robots and to leverage the free
programmability of robots to create artificial growth processes. Our main
idea is to extend the rich variety of natural growth processes [14] with
artificial growth processes. There are many potential applications but
we focus on the artificial growth of potentially dynamic architectural
artifacts.

The research presented in this paper is a machine learning approach to create
robot controllers that influence the growth of plants. It is an initial step
towards the creation of a complex bio-hybrid system, i.e. a decentralized,
self-organizing multi-robot system tightly coupled with plants.

Bean growth and motion experiments

We have created a setup that allows us to conduct simple experiments with
plants in order to study and explore the possibilities of controlling their
growth and motion. The choice for a specific plant species was driven by
the facts that (a) the speed of growth and motion is of great concern, and
(b) the plant needed to grow in standard robot lab conditions and o�ce
areas. A good compromise to cope with these constraints is the common
bean plant (Phaseolus vulgaris) in its early growth stage. In our setup, as
soon as the bean plant starts sprouting, we place it inside a box of 2m
height and 1,20m in width and breath, clad in black cloth from the inside to
reduce light reflections and to allow for taking high contrast photos. Next,
we impose a light stimulus on the plant using two light sources located
30cm above the plant, and 30cm to the left and right, respectively (see
Fig. 1(a)). They are turned on alternatingly every six hours for a total
period of a 72 hours.
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(a) (b)

Figure 1: Simple growth and motion experiment: (a) Light from the left and
right is alternatingly shone on a common bean plant. (b)
Superposition of states indicating the amplitude of the plant’s growth
and left-right motion.

The light sources are two Adafruit NeoPixel RGB LED strips with 144 LEDs
each. In our setting, each strip emits white light at full brightness which
requires a current of up to 8.64A. Each LED has a power consumption
of 0.24W and emits 18 lumen. A Raspberry Pi is used to operate the
LED strips and a camera module1 that takes a picture every five minutes,
resulting in 864 images for each experiment, and 5184 images in total.

In Fig. 2 we show a sequence of photos from one of six experiments. The
16 photos depict growth and movement throughout an initial time period
of 48 hours, with three hours between the shots2. After 48 hours the plant
has grown to about 20cm. During the six-hour activations of each light
source, the plant bends towards it while maintaining a counterclockwise
turning behavior (standard climbing behavior of bean plants, not seen in
the photos). In Fig. 1(b) a superposition of several photos taken during
the experiment is shown, clearly indicating the amplitude of the plant’s
left-right motion.

1 https://www.raspberrypi.org/products/camera-module/
2 Find a video at: https://youtu.be/e-84bxhwpZo
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Figure 2: Photos of the bean plant at di�erent times during the experiment
showing rapid growth and motion towards light; the white line
indicates the location of the roots, the sun symbolizes the activation of
a light source to the left or right.
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Figure 3: Plant tip positions from all our experiments. Black filled circles denote
the activation of the left, white filled circles the activation of the right
light source.

Bean growth and motion model

We processed the obtained 2D images using the OpenCV library. Due to
the high contrast between background and plant, we simply transformed
the images to grayscale, applied a Gaussian filter to smoothen the images
and then extracted the brightest points. The highest point of the plant
(after cropping the area of actual plant growth, dismissing the pot and the
light sources) is stored as its tip with the position x = (x, y) relative to
the roots of the plant. The time series x

t

for each experiment is a rough
description of the plant’s growth process and the e�ect of the controlled
stimuli (Fig. 3).

We make use of this data to create a simple bean growth–motion model.
We define a model that represents a plant’s current tip position x

t

and the
current lighting condition L

t

(boolean value indicating whether the left
light is on). A current configuration of the system is then defined by (x, L)

t

.
Using the collected data we derive the next tip position x

t+1

for discrete
time steps, each representing five minutes of real time. We assume that
the two light sources are identical and also that the plant has no other bias
to grow towards either of the two directions. Therefore, we mirrored the
collected data to both sides (mapping x ‘æ ≠x and keeping y identical) to
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Figure 4: xy-motion of the bean plant’s tip within 5min when activating the
left/right light source (left-hand/right-hand column, respectively).

logically double the available data and hence to increase the precision of
the model (note that the light conditions can still be distinguished: light
on in the same quadrant or light on in the other quadrant).

In order to calculate the next plant tip position x
t+1

for a given configura-
tion (x, L)

t

, we define a rectangle R = ((x ≠ w

x

, y ≠ w

y

), (x + w

x

, y + w

y

))
with the plant tip position x at the center, width 2w

x

, and height 2w

y

(i.e.,
a sliding window). Then we select all data points that are contained by
rectangle R and that have the same light condition. Based on these data
points we want to calculate a shift of the tip position �x and �y. From
the selected data points and their successors in time we obtain samples of
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Figure 5: Histograms of plant tip position shifts acquired from all data points
within 5min time period.

We present and investigate three di�erent methods to calculate the tip shift.
The first is called deterministic, implements a deterministic model, and
uses the mean values �x and �y of all data points inside the rectangular
window. The second is called stochastic, implements a a stochastic model,
and directly samples uniformly from the data points inside the rectangular
window. The third method is called mixed, implements a mixture of the
previous two methods, where the mean value �x is used to calculate �x,
while �y is randomly sampled from a normal distribution with a mean
value of 0.04 and a standard deviation of value 0.01. The mean value of 0.04
was chosen to get overall heights of about 15cm for the chosen experiment
length which corresponds to what we observed for the experiments with
the natural plant.
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�x and �y. In Fig. 4 we show the original data of �x and �y within 5min
time periods for all data points and both light settings before mirroring
the data. The plant tip shift at the side opposite to the currently active
light has the greatest absolute values. Note that, not only �x but also
�y are subject to the plant’s rotational motion which is usually centered
at x = 0. We observe that at the bottom half (y < 15) the change in
motion is generally smaller, probably because the plant’s size limits its
motion. In Fig. 5 we show the distribution of �x and �y for all data
points. We interpret these distributions as normal distributions which can
be expected for such a natural growth process.



Table 1: Used NEAT parameters.

Parameter Value Parameter Value
PopulationSize 50 CrossoverRate 0.5
DynamicCompatibility True MutateWeightsProb 0.9
YoungAgeTreshold 15 YoungAgeFitnessBoost 1.0
OverallMutationRate 0.5 WeightReplacementMax 5.0
MinSpecies 5 WeightMutationRate 0.75
MaxSpecies 25 Elitism 0.1
SurvivalRate 0.6 MutateAddNeuronProb 0.04

Evolutionary approach

We use MultiNEAT [2] in combination with our simple growth–motion
model to evolve closed-loop controllers in simulation. MultiNEAT is a
portable software library implementing NEAT (NeuroEvolution of Aug-
menting Topologies) that uses the com plexification method [12] to evolve
artificial neural networks (ANN). Table 1 specifies the NEAT parameters
used in our experiments. These parameters are based on our experience
from previous experiments where we evolved robot controllers for a parallel
parking task [16]. We evolve ANN with two input neurons, a variable
number of neurons in the hidden layer (determined by NEAT), one output
neuron, and an unsigned step activation function.

The input of the network is the current plant tip position x
t

= (x, y)
(initially x

0

= (0, 0)). For each time step (discrete time steps represent 5min
in reality), the network’s output simply determines the light condition L

t

,
that is, whether the left light or the right light is turned on. Next, the
current configuration of the system (x, L)

t

is passed to the simple growth–
motion model in order to obtain the next tip position x

t+1

. This procedure
is iterated for 300 time steps (representing 25 hours of real time), while
evaluating the performance of the controller in respect to a certain task.

As a proof of concept, we evolve controllers for two simple tasks. (1) max-
imum motion: The task is to maximize the plant’s overall motion (i.e.,
covered distance of the plant tip) during a time period of 25 hours, and
(2) three targets: The plant has to approach three di�erent desired positions
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in space during the experiment. For both tasks, we conduct a set of three
experiments using the above mentioned deterministic, mixed and stochastic
method (i.e., calculation of the next plant tip position x

t+1

) to model the
growth and motion behavior of the plant.

First, we define the fitness function F (eq. 1) to evaluate the performance
of the individuals during the evolutionary processes within the maximum
motion experiments. It simply accumulates the absolute value of all the
plant tip position shifts �x

t

over 300 time steps:

F =
300ÿ

t=2

|�x

t

|, with �x

t

= x

t

≠ x

t≠1

. (1)

For each experiment, 10 evolutionary runs of 100 generations each with
a population size of 50 were performed. For the deterministic and mixed
method we use only one repetition to evaluate a controller. For the stochastic
method we do three repetitions, hence we get three fitness values F

0

, F

1

, F

2

,
and we define the controller’s fitness conservatively as the minimum F =
min{F

0

, F

1

, F

2

}. The best fitness of each run over generations for the
deterministic method in the maximum motion experiment is shown in
Fig. 6(a). Clearly, the task here is simple, therefore, convergence is achieved
already at about generation 60. The behavior of the simulated plant tip
(i.e., its trajectory) when running the best controller is shown in Fig. 7(a).
The controller turns the right light on in the beginning, keeps it on to grow
the plant tip to the right, then switches the left light on, and switches
between the lights during the last few time steps. The fitness value of
this controller is F = 72.7, which means the tip moved 72.7cm in total
(horizontally). The best fitness for each run over generations for the
mixed method for the maximum motion experiment is shown in Fig. 6(b).
Similarly, the evolutionary approach converges quickly because of the task’s
simplicity. In Fig. 7(b) we show a trajectory of the plant tip sampled from
the stochastic simulation (plant tip motion in height is stochastic, motion
in width is deterministic) when running the best controller with a fitness
value F = 135.5. The controller is turning lights on and o� frequently
to maximize the plant motion. The best fitness over generations for the
stochastic method in the maximum motion experiment is shown in Fig. 6(c).
Here, the complexity of the task is increased because both the plant tip’s
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motion in height and width are stochastic and also variant because they are
sampled directly now. As a result, we observe a non-monotonic increase
of fitness interrupted by sudden drops. There is only a small increase in
fitness within 100 generations and no saturation. We have tested the initial
populations against the final populations using the Wilcoxon Rank-Sum
Test to check whether the evolved controllers perform better than random.
The test indicates that the controllers of generation 100 are significantly
better. The simulated behavior of the tip when running the best controller
of fitness value F = 96.57 is shown in Fig. 7(c).

Considering the objective to reach three targets, the fitness function is
defined as

D(x
target

) =|x
target

≠ x

t

| + |y
target

≠ y

t

|,

E =
120ÿ

t=2

D(3, 8) +
220ÿ

t=121

D(≠5, 11) +
300ÿ

t=221

D(≠1, 18),

F =F

max

≠ E, (2)

for an assumed maximal fitness F

max

= 3000. For each target it considers
a defined time interval during which it accumulates the di�erences between
the respective target’s position x

target

and the current plant tip position x
t

.
The first phase lasts for 120 time steps (time interval [0, 120]), the second
for 100 time steps (time interval [120, 220]), and the third phase for 80 time
steps (time interval [220, 300]).

Here, for both the deterministic and mixed experiments, 10 evolutionary
runs of 600 generations each with a population size of 50 were performed.
Similarly, we also conducted the stochastic experiment, however, for only
150 generations (due to technical issues) but still with three repetitions
and the minimum of these three values as fitness. In contrast to the
maximum motion task, this task is more complex and requires longer
evolutionary runs in order to evolve successful behaviors. The best fitness
of each run over generations for the deterministic method in the three
targets experiment is shown in Fig. 8(a). In contrast to the results from
the maximum motion experiment, convergence is not achieved. Instead,
there is a steady increase in performance through the 600 generations. This
proves that the task here is more complex and indicates the presence of
a room for improvement. The behavior of the simulated plant tip when
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Figure 6: Maximum motion, fitness of the best controllers per generation of the
10 evolutionary runs for the maximum motion experiments.
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Figure 7: Maximum motion, (sampled) trajectories of the simulated plant tip
(white filled circle: right light is on, black filled circle: left light is on)
for the respective best controller.
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running the best controller is shown in Fig. 9(a). The controller turns the
right light on in the beginning until the plant tip is close to the first target,
then switches the left light on until the plant tip is close to the left target,
then keeps on switching between the lights and fails to meet the third
target. The fitness value of this controller is F = 1881.2. The best fitness
of each run over generations for the mixed method in the three targets
experiment is shown in Fig. 8(b). Similarly, no saturation is observed,
however, the trajectory of the plant tip when running the best controller
with a fitness value F = 2255.9 (see Fig. 9(b)) shows that the tip could
successfully approach all three targets. The best fitness over generations for
the stochastic method in the three targets experiment is shown in Fig. 8(c).
As above, we have checked for significance between the initial and final
population. According to the Wilcoxon Rank-Sum Test, the performance of
controllers in the last generation are not significantly better than the initial
population. However, according to our observations (see Fig. 9(c)), there
is an improvement in the performance and longer evolutionary runs are
planned for future work. The simulated behavior of the tip when running
the best controller of fitness value F = 1843.65 is shown in Fig. 9(c).

Conclusion and future work

We have reported on experiments with a natural plant, the common bean
(Phaseolus vulgaris). We have introduced a simple plant growth and motion
model which focuses on the plant tip exclusively. Then we used this model
to simulate the plant tip motion in several preliminary experiments. This
way we evolve closed-loop controllers that maximize the plant’s motion
or grow the tip to three di�erently located targets. According to the
discussion in the previous section, the results from the six experiments
indicate the e�ectiveness of our evolutionary approach (arguably except
for the experiments with the stochastic method). Also, in many cases the
optimization process did not fully converge. Running the evolutionary
process for a longer time would probably increase the performance of the
evolved controllers. Therefore, we intend to investigate longer evolutionary
runs in future work, probably along with a more e�cient implementation.
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Figure 8: Three targets experiments, fitness of the best controllers per generation
of the 10 evolutionary runs for the three targets experiments.
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Figure 9: Three targets experiments, (sampled) trajectories of the simulated
plant tip (white filled circle: right light is on, black filled circle: left
light is on) for the best controllers. Black crosses indicate the positions
of the three targets.
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Figure 10: This photomontage illustrates the workings of our current augmented
reality interface for bio-hybrid plant-robot systems.

the evolutionary algorithm (e.g., the mutation rate) in order to decrease
the time required to evolve successful behaviors.

Especially the results from the mixed, three targets experiment are promising
(see Fig. 9(c)). We plan to test these controllers, that were evolved in
simulation, in the real setting and hence investigate the reality gap and the
reaction of real plants. As the controllers will not perfectly transfer into
reality, we expect to require additional investigations. We plan to extend
the existing model of the plant tip to consider the whole plant growth and
motion behavior, that is, also to model lower parts of the plant.

In addition to honing the domain model and the developmental and dynamic
plant representation, we are also pushing towards the application of flora
robotica’s results (e.g., applications in architecture). In terms of accessibility,
we found it especially useful to spatially experience a bio-hybrid plant-robot
system. To this end, we are developing an augmented reality interface
that allows the user to project the system into arbitrary real world spaces,
configure and fast forward the system’s evolution. Fig. 10 shows our
current prototype: (1) A stereoscopic camera (OVRVision) is mounted on a
stereoscopic head-mounted display (Oculus DK2). (2) QR code markers on
the ground synchronize the augmented reality projection with the lab space.
(3) The user can place robotic machinery, seed plants and experience their
interplay over time.

Finally, we will integrate these approaches within our project flora robotica
to control the growth and motion of natural plants by robots and to create
an adaptive bio-hybrid system.
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We are also motivated to investigate the impact of di�erent parameters of
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