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Abstract—The fast evolution of quadrotors paves the way for
the application of robotic maintenance on walls and facades.
In this work, we present an application-oriented modelling and
simulation effort to evolve self-organising behaviour of a set of
quadrotors. In particular, we rely on Genetic Programming (GP)
to optimise control programs to collaboratively direct the route
of autonomous quadrotors across a (vertical) rectangular surface
relying on local knowledge only. In order to account for various
real-world constraints, we made use of a three-dimensional,
physical model that considers battery consumption, collisions,
and rudimentary avionics. The evolved control programs that link
sensory information to actuation could be executed on the Robot
Operating System (ROS) available for numerous robotic systems.
Our results show that very simple evolved control programs
(moving left until the battery is drained, starting from a random
location) perform better than those that we had previously
engineered ourselves.

Keywords–Quadrotors; ensambles; genetic programming; lawn-
mower problem; facades.

I. INTRODUCTION

Performing repetitive tasks across a large surface is an
apt target for automation. Accordingly, several generations of
semi-autonomous vacuum cleaners and lawnmowers have al-
ready entered the consumer market [1], [2]. Fast technological
advances in quadrotors [3] promise versatile task automation
on surfaces also in three dimensions, such as cleaning building
facades [4].

Inspired by the efficient and robust collaboration of social
insects [5], for instance in building their nests, we especially
consider the case of numerous quadrotors working on a facade
concurrently. To a great extent, social insects coordinate their
efforts by means of indirect communication through the envi-
ronment, or stigmergy [3]. In this fashion, all the members of
the colony can work based on local needs, which assures that
all the local actions are taken to meet global goals and that
they can be executed in parallel.

It is a challenge to find the best possible behaviour for each
colony member to make such a self-organised setup work. We
have developed a model for facade maintenance by a quadrotor
ensamble and evolved behaviours for the homogeneous indi-
viduals in physical simulations. After giving credit to related
works in the context of GP and the Lawnmower Problem, we
outline our simulation model in Section III. We provide details
and results of differently staged evolutionary experiments in
Section IV, which are discussed subsequently in Section V.
We conclude this paper with a summary and an outlook on
potential future work.

II. RELATED WORK

Our contribution builds on preceding works from the fields
of GP and Evolutionary and Swarm Robotics. A recent survey
of Evolutionary Robotics stresses the challenges of modular
and soft robotics, evolvability of a system, self-organisation,
and the gap between evolved models and their applicability to
reality [6]. We take the latter challenge into consideration by
providing a comprehensive simulation approach based on the
physics-enabled robotics simulator Gazebo [7] and ROS [8].
It will be outlined in detail in the next section.

In terms of self-organisation, several works have influenced
our design. Lerman and Galstyan [9] have introduced a method
for macroscopic analysis of the behaviour of a robotic swarm’s
members. In their scenario, a homogeneous group of robots
must perform two distinct but similar tasks in one target area.
The individuals autonomously switch between the two tasks
solely based on local information. Based on a limited memory
they can estimate the state of the global task and derive local
decisions. Jones and Matarić have investigated the effect of the
memory capacity in such a collaborative setup [10]. In order
to speed up work across a large area, Schneider-Fontán and
Matarić split the overall surface into discrete segments and
assigned the segments to each robot [11].

The task that our robot ensamble is evolved to address is
similar to the Lawnmower Problem, introduced by Koza in
1994 [12]. The challenge here is to efficiently traverse a dis-
cretised rectangular surface moving along cardinal directions.
Alongside the problem, Koza presented first solutions based on
GP techniques [12]. GP is an evolutionary approach especially
suited to generate new programming code or behaviours,
working on according (syntax-)tree structures. In general,
evolutionary computing approaches are often used when novel
behaviours need to be generated and optimised at the same
time. Random sets of candidate solutions to a problem, or
populations of individuals, are created at the beginning of an
evolutionary algorithm and slightly modified and recombined
over several generations to evolve their performances.

After Koza’s work, the Lawnmower problem has repeat-
edly been used as a measure of reference for evaluating the
performance of Evolutionary Computing approaches, examples
are found in [13], [14], [15].

Extrapolation to arbitrary polygons have also been consid-
ered [16]. Nevertheless, we focus on rectangular surfaces with
the extension of considering the physicality of our interacting
agents and several agents working concurrently.



Figure 1. Interwoven software modules for efficient, accurate simulation.

III. PHYSICAL AND BEHAVIOURAL MODEL

In order to establish a physical simulation model of a
quadrotor ensamble, we rely on Gazebo [7], which uses the
Open Dynamics Engine (ODE) for physics simulation [17] and
which is supported by an extensive library of tools and sensor
implementations. The utilisation of an established physics
engine ensured that efficient and accurate collision detection
routines were in place to guide the quadrotor agents and also
to automatically detect if they crashed. As only very basic
Newton-Euler equations for integrating the drones’ movements
and rigid-body collision detection was needed in the scope of
our simulations, most other efficient 3D physics engines would
have worked for us as well (e.g., PhysX or Bullet).

By means of a plugin, Gazebo simulates the flight be-
haviour of the Parrot AR.Drone 2.0 quadrotor, an affordable
off-the-shelf consumer product. In addition, Gazebo integrates
natively with the ROS [8], a software distribution providing
a unifying infrastructure for programming robot controllers.
Among numerous hardware designs, ROS also supports the
AR.Drone 2.0 hardware. As a result of the tight integration
of Gazebo and ROS, the same set of control commands
and telemetry reports is used for the simulation model as
in reality. Figure 1 schematically shows the relationships of
the involved software components to provide for a physics-
enabled, agent-based simulation of quadrotor ensambles based
on the Parrot AR.Drone 2.0 technology. The setup allows for
in-place switching between simulated and real hardware.

The concrete task of the quadrotors is visualised in Figure
2: (a) shows how perpendicular facades border a ground
surface on two sides. The quadrotors need to hover from
randomly chosen points on the ground surface (wherever they
are placed) to the respective facades and clean individual cells,
before returning to their origins for a battery recharge. Figure
2 (b) shows the arrangement of cells to work on. A cell’s
colour reflects its dirtiness (from white/clean to red/dirty). The
blue normals identify the front of the cells The quadrotors are
randomly placed on the ground between two perpendicular
facades. A grid is superimposed on the facades that divides
it into cells with dimensions similar to one quadrotor. In
our model, we assume that the quadrotor can determine the
degree of dirtiness of each cell that it can see from a small
distance. Figure 3 shows the perceived and augmented view
of the quadrotor agents on the facades. In Figure 3(a), the
gray translucent pyramid shows the agent’s field of view. The
six green, labeled cells are considered visible, whereas the
red ones are not. Figure 3 (b) depicts a section of the grid of
vantage points for the quadrotor agents. From these points, the
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Figure 2. (a) Top-down and (b) perspective view on the assay setup.

agents determine what to do next. The green spheres represent
the vantage points, the red arrows illustrate neighbour relations
between them. For two exemplary vantage points, the view
frustums are also included.

The quadrotor is heading towards according vantage points
in front of the facade to perceive a number of cells and ensuite
to determine which course of action it should pursue, i.e., to
work on one of the cells it sees, to move to a neighbouring
vantage point, or to return to its origin on the ground to
recharge. These states and activities are summarised in Figure
4. Here, the edge labels describe the conditions triggering state
transitions. Elliptical outlines denote longer-term states, while
the square outline marks a transient decision-making state.

IV. EVOLUTIONARY EXPERIMENTS

Based on the model outlined in the previous section, we
bred behaviours for a homogeneous ensamble of quadrotors
that result in efficient collaborative cleaning behaviours by
means of the Evolving Objects framework [18]. In a first phase
of evolutionary experiments, randomised populations filter
the vast search space of valid configurations, or genotypes,
for viable individuals. In a second phase, we use the best
individuals from the first phase to seed the populations.

Each genetic experiment follows the evolution cycle de-
picted in Figure 5. The diagram shown is loosely based



(a)

(b)

Figure 3. The view of a quadrotor agent (a) in relation to the projected
facade grid and (b) considering the grid of flight positions.

Figure 4. High-level state diagram of an agent.

on [19]: Elliptical nodes represent populations, rectangular
outlines denote GP operators. The transition arrows represent
the specimen flow between operators. Edge labels denote the
groups’ semantics and sizes in relation to the total population
size NP . The evolution cycle breeds a population of size
NP for a maximum of Gmax generations. The individuals
represent homogeneous flocks of NR quadrotors, the number
of facade cells NC is proportional to the size of the flock.
At the beginning of each simulation, a total amount of dirt of
1
2NC is distributed randomly across the target surface so that
the cells have an average dirt value of 0.5. Each simulation
has an upper time limit tlimit of simulated time. Once the
simulation finishes, the flock’s penalty value is calculated by

Figure 5. GP cycle used in our experiments.

means of the following equation.

h(i) = Dremain · 50 +
NR∑
j=1

hrj (i)

where Dremain ∈ [0, 1
2NC ] is the total amount of dirt remain-

ing on the target surface and each quadrotor rj contributes a
penalty share hrj (i) defined as:

hrj (i) = tc + Ec · 100 + blimit · 500 + bstatic · 500
+ bdrained · 2000 + ni · 300

where tc and Ec denote the time and, respectively, energy
until completion, the booleans blimit, bstatic and bdrained
indicate whether the time limit was reached, the quadrotor
never moved, or its battery got fully drained, and ni denotes
the number invalid action selections. The coefficients reflect
the weightings we deemed appropriate considering the factors’
contributions to the overall performance.

In order to minimise the penalty values, GP operators
modify the genetic encodings of the flocks, i.e., the decision
function of the quadrotors encoded in strongly-typed tree-
structured programs. These trees connect non-terminal nodes
for control flow, boolean and arithmetic operators, and ac-
tions that would move the quadrotors into a new state (see
Figure 4). Terminal nodes of the trees can comprise closed
instructions, such as returning to the base, or information about
the system state, such as the current distance to the base
station, the remaining battery life, status information about
the perceived cells of the facade, or arbitrary constants. In
order to narrow down the search space, we ensured to only
consider syntactically correct genotypes with tree-depths of at
most 30 that include instructions to return to the base, to move
to a neighbouring vantage point and to approach a cell of the
facade—without these three basic instructions, the quadrotor
could not possibly succeed in its task. We further provide
support functions to let the quadrotor move to neighbouring
vantage points, fly back to the base and recharge, and to let it
test the presence and return cells in its field of view within a
certain dirt range.
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Figure 6. The average penalty and standard deviation across 10 simulations
for each genotype.
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Figure 7. Each data point shows the (non-averaged) penalty value vs. syntax
tree depth of a genotype.

A. Preselection

In a first relatively unconstrained phase of experiments, we
were looking for a diverse set of viable solutions. Therefore,
we setup three trials to generate rather large populations
comprising 50 and 100 individuals, breeding them only for
20 and 10 generations, respectively. Although our experiments
ran on a distributed infrastructure, the heavy computational
burden of the runs lasting 900 simulated seconds did not allow
us to consider more than two quadrotors in this first phase of
evolutionary trials.

In order to identify the best solutions of the first phase, we
merged the penalty value for all genotypes into one preliminary
ranking. Subsequently, we re-evaluated the best 30 individuals
ten more times in order to validate the statistical significance
of the ranking. Figure 6 shows the according ranking based on
the genotypes’ average penalty value. To the left of the vertical
gray dashed line are the ten individuals we consider the best
solutions of the first phase. We observe strong similarities in
the performances of the best individuals, achieving a penalty
value within a small margin around 4000. Upon inspecting the
structure of these individuals, we found that several of them are
members of the same lineages, having syntax trees of similar
structure, differing only in minor branches.
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Figure 8. Penalty ranking of the second phase of evolutionary experiments.

4 Experiments

Figure 4.5: Final Phase 2 average penalty ranking of 10 runs. Also shown for comparison
are the 10 seed individuals from Phase 1 (green) and two manually created
decision functions (blue). Genotypes 0aabf834 and 131cfa1e did not finish
any of the 10 simulations.
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Figure 4.6: Additional simulations average penalty ranking of 10 runs with increased
time limit tlimit = 20000s. Shown are the same individuals in the same order
as in Fig. 4.5 for easier comparison. Genotypes d4990077 and 0aabf834 only
finished 8 and 6 of 10 simulations, respectively. Genotype 131cfa1e did not
finish any simulations at all.

50

Figure 9. Re-evaluation of the best 50 bred individuals.

Figure 7 shows the penalty values of the individuals on
the vertical axis in relation to the according syntax trees’
depths on the horizontal axis, with each data point representing
one evaluation. The lower boundary of the data points in
the figure is particularly interesting, as it indicates that very
small syntax tree depths of three and four do not yield good
performances. The respective specimen do not achieve penalty
value lower than 4300, but on average, most data points at
these depths are below 4500, which is not a poor performance
considering the overall results. We found the best individuals in
the narrow range from depths five to eight. The relatively large
number of evaluations in this range reflects a prevalence of
genotypes with these depth values in the observed populations.
In the depth range from nine to 19, we see only average
performance. Note that the depth values 17 through 19 show
relatively few data points, especially compared with the much
greater number of evaluations and the renewed performance
peak at depth 20. Overall, frequent evaluations for individuals
that achieved a penalty value of about 4400 are displayed.
This penalty baseline represents individuals, which are not
particularly effective in terms of the cleaning task but that
successfully avoid physical damage.

B. Refinement
In addition to 20 randomly generated individuals, we fed

the best results of the first phase into the second phase
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Figure 10. Penalty values vs. syntax tree depth in the second phase of
evolutionary experiments.

of experiments. This phase was more directed, introducing
some restrictions, as well as simplifications to speed up the
simulations. At the same time, to increase the pressure towards
effective collaboration, we increased the number of simulated
quadrotors from two to four, also imposing a duplication of
facade cells (previously 60, now 120). An extended time limit
of tlimit = 1500s forces the quadrotors to land at least once, an
activity they could avoid during the first phase of experiments,
as their batteries support up to 1200s of flight. The GP
parameters have been tweaked to a reduced population size
of NP = 30, maintaining a maximum number of Gmax = 50
generations. Figure 8 shows the merged results of the second
phase: For comparison ten previously evolved seed individuals
(green) and two manually created decision functions (blue) are
also shown. The seed genotypes 0aabf834 and 131cfa1e
did not finish any of the simulations. In order to provide
a basis for comparison, the resulting statistics are extended
to include the ten seed individuals from the first phase and
manually created decision functions, all of which are re-
evaluated in the second simulation scenario. In Figure 9
subsequent re-evaluations of the best 50 individuals are shown
(the transparent bars indicate that the respective specimens
failed to complete all evaluation runs). With an increase of the
maximally simulated time from tlimit = 1500 to 20000s, most
of the best bred individuals improve their performance. How-
ever, although most individuals further reduce their penalty
value, the previous ranking cannot be maintained (compare
with Fig.8).

In Figure 10, we see the (non-averaged) penalty value
calculated in the second phase of evolutionary experiments vs.
the associated genotype’s syntax tree depth. Again, we plotted
the penalty value against the individuals’ syntax tree depth,
not averaging multiple evaluations of the same genotype but
showing them as multiple data points. The lower boundary
of the scattered points indicates that trees below a depth of
five do not perform well. In analogy to the results from the
first phase, the best individuals are still located in the range of
depths five to eight. However, different from the results of the
first phase, where a steady increase in penalty from depths nine
to 13 can be seen (from about 4100 to 4300), the individuals’
penalties do not rise until a tree depth of 11 (from about 9600
to 9800). A substantially steeper penalty increase follows from

depths 14 to 16, stabilising at about 11300. This time the
scattered points aggregate along two horizontal lines, one at a
penalty value of around 11400, the other one at about 16200.
Again, they emerge due to genotypes that are not particularly
effective but not particularly bad either. The duality of the
recovered baseline arises from one strong scheme injected with
the seeded individuals from phase one and from a dominant
scheme that evolved from random initialisations in phase two.

V. DISCUSSION

In the previous section, we compared the evolved quadrotor
behaviours to two manually engineered genotypes with IDs
7c4c8923 and 3cee58e6. The first would return to the base
station to recharge, if necessary (less than 10% battery life
remaining). Next, it would choose to work on a dirty cell in
its field of view. It gives priority to cells with high degrees
of dirt (equal or above 0.8). In the absence of heavily dirtied
cells, a cell with value between 0.3 and 0.8 is chosen with
50% chance. If no cell is chosen, the quadrotor flies to the
next available vantage point to its right or below. Note that
cells with values below 0.3 are not considered. As a result,
after a some time, the quadrotor moves from one vantage point
to the next without doing any actual work, see Figure 9.

The other preconceived genotype, ID 3cee58e6, again starts
out with conditional recharging. Next, depending on their
degree of dirt, it may work on one of the two cells at the
centre of its field of view. Alternatively, it returns to the
base station, recharging the batteries, and to approach a new,
arbitrarily chosen vantage point afterwards. Approaching a
random vantage point after recharge is also exploited by well-
performing specimen bred throughout our genetic experiments.

The best genotype that emerged from our evolutionary
experiments carries the ID 7bc2fb52. If the upper-left cell in its
field of view is clean, it moves to the vantage point to the left,
if available, and to the base station, otherwise. If the upper-left
cell is dirty, it either starts cleaning this cell or any other cell
that has accumulated even more dirt. This process is repeated
until the upper-left cell is finally addressed and the quadrotor
moves to the next vantage point (possibly diverting past the
base station). As a result, the quadrotor works through single
rows of vantage points, moving to the left whenever the top left
cell of their field of vision is clean and returning to their base
station when it reachs the left border of the target surface. This
behaviour is only more efficient than our engineered specimen,
given an overall high number of dirty cells. With a decline of
dirty cells over time, its performance drops, as can be seen in
the results of the longer, second experimental runs (Figure 8).

In the further prolonged re-evaluation runs summarised
in Figure 9, ID 6ba33338, evolved within the first set of
experiments, performed best. This specimen flies to the base
station, if the lower-left cell is clean – unless the upper-left cell
is also clean, in which case it moves to the left-hand vantage
point, if available. Otherwise, it starts cleaning the (dirty)
lower-left cell or any other dirtier cell. However, the probability
that a dirtier cell is selected is directly proportional to the
remaining battery life. This implies that given less energy, it
is better to not start working on rather dirty cells, as this will
take longer and use more battery.

Due to the performance requirements of the prolonged
simulation scenario, it was not eligible for evaluation within an
evolutionary setup. It proved useful, however, for the purpose



of testing the scalability of the bred solutions. For instance,
it clearly showed that our refinement runs suffered from
overfitting. That is the best specimen in the second experiment
phase were bred to remove as much dirt as possible within
the first 1500 simulated seconds, not addressing the need to
find leftover dirty spots on the facade. This insight stresses
an important weakness in our approach: Instead of a single, if
partially randomised, simulation scenario, another study has
to be conducted emphasising variation in order to prevent
overfitting.

VI. CONCLUSION AND FUTURE WORK

We presented an approach to self-organised quadrotor
ensambles to perform homogeneous tasks on large surfaces.
We detailed the physical simulation model, as well as the
individuals’ behavioural representation. Our results show GP
experiments that led to self-organising behaviours better than
manually engineered ones. Yet, as pointed out in the dis-
cussion, more robust and more generic behaviours have to
be bred. This might be achieved by an extension of the
training set, i.e., by a larger pool of experiment scenarios.
However, as the simulation is the performance bottleneck of
our approach, a related goal is to speed up the robot simulation
while preserving its accuracy. Furthermore, our preliminary
investigations were limited to syntax trees with a depth of
20 or lower. The statistical results of our first evolutionary
trials suggested that larger syntax trees might perform as
well as or even better than those observed. Hence, another
future endeavour might be a more strategic examination of the
solution space.
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