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Abstract—Augmented Reality (AR), Mixed Reality (MR) and 

Virtual Reality (VR) have an increasing impact on our daily lives. 

They improve workers’ performance in industry and medicine. 

In addition gaming and entertainment profit from these 

innovations. The enabling devices are often head-mounted. New 

intuitive interaction methods must be developed to control 

application, because conventional input devices such as 

keyboards, touch screens or classical touch pads cannot be used. 

This paper introduces electroencephalographic (EEG) eye-

tracking as an additional interaction channel. Ocular artefacts 

(EOG) in the EEG signal are used to detect eye positions. A 

Brain-Computer Interface (BCI) is used to capture the data. Data 

is processed and EOG artefacts are extracted to compute the 

position of the pupil. The first test runs confirm that ocular 

artefacts in the EEG signal are strongly correlated with the 

position of the pupils. Extreme positions of the pupils (horizontal 

left, horizontal right, vertical up and vertical down) can be 

detected with high accuracy (true-positive-rate of up to 96,6%). 

In future tests, we successively refine the direction and speed of 

eye movement and verify their usage under real-time conditions. 

Keywords—Brain-Computer Interface (BCI), 

Electroencephalography (EEG), Electrooculography (EOG), Eye-

Tracking, Human-Computer Interaction (HCI), Head-Mounted 

Device (HMD), ocular artefacts 

 

I.  INTRODUCTION 

Augmented, Mixed and Virtual Reality have experienced 

an enormous technical development in recent years. They 

represent the fourth wave of disruptive digital technology [1] 

and have now arrived in everyday use. Smart glasses already 

support workers in remote maintenance by sending blueprints 

of the product to be repaired directly into the field of view. 

Planned products can be virtualized and customized before 

they are physically created. Tele-support, training videos and 

videoconferencing are further applications that will save time 

and money in the future [2]. In medicine, the use of 

Augmented Reality is increasingly being researched, too. X-

ray images are matched with real images and visualized by a 

Head-Mounted Display (HMD). Even remote operations are 

already possible in part [3]. 

The gaming and entertainment industries benefits from 

these innovations as well. In tandem with the hardware 

suppliers, they produce and deliver contents that make use of 

novel media modalities. One common goal of innovation of 

consumer media is to make the mapping of real and artificial 

worlds as immersive as possible. An important part of this 

immersion is intuitive interaction. Current developments focus 

on the optimization of content and innovative control [4]. 

Producers of HMDs introduced additional hardware to control 

applications. 3D mice, digital gloves, tracking sticks or 

integrated electromagnetical sensors provide new ways to 

interact with applications. 

One research area is the development and evaluation of 

hands-free applications, which should enable the user to 

interact in a natural way without additional hardware. Using 

smart glasses, the eyes as primarily involved organs offer an 

interesting possibility for intuitive interaction. This paper 

presents a novel eye-tracking approach. It interprets ocular 

artefacts in the EEG signal, which are caused by movements 

of the eyeball. A major difference to camera-based eye-

tracking systems lies in that the measurements are not made 

directly at or next to the eye but at different positions on the 

head. Therefore, we can place non-invasive electrodes 

anywhere on the head, which results in technology that can be 

easily integrated into common HMDs. 

II. STATE OF THE ART 

A. Interaction 

Uchino et al. [5] utilize speech recognition and gestures to 

interact between avatars and manipulate 3D-objects in real-

time. Gestures, which are captured by 2D-cameras, are also 

used to interact with a 3D-model [6]. Achibet et al. [7] 

combined passive haptics and pseudo-haptics and added them 

to gestures to provide force-feedback. Seeking enhanced 

player interaction, Krompiec et al. [8] use a motion controller 

in addition to a head-tracking system. This controller tracks 

the controller’s acceleration and button events, which are two 

individual actions in games. 

Brain-Computer Interfaces (BCI) establish an additional, 

direct channel between a human and a computer. Faller et al.  



 
Fig. 1.  Graphical illustration of the corneo-retinal standing potential of the 
eyeball. 

 

[9] introduced a system, which uses steady-state visually 

evoked potentials (SSVEP) to finish navigation tasks in 

Virtual and Augmented Realities. Motor imagery is also 

processed by BCI and combined with eye-tracking to select 

content and objects [10]. Positions and movements of both 

eyes can be detected by cameras (binocular eye-tracking). An 

image processing software then recognizes the position of the 

pupils and thus conveys conclusions about the direction of 

view (gaze) and focus. 

B. Eye-tracking 

Virtual Reality applications use such information mainly 

for foveated rendering or foveated imaging [11]. This allows 

to preserve valuable resources, such as computing power and 

energy consumption [12]. Eye-tracking in Augmented 

Realities is used to determine the user's attention and to guide 

the user through the application purposefully [13]. In addition, 

patterns of eye movements can be interpreted and supported, 

for example while reading [14]. Further areas of using the 

information of eye positioning and movement are spatial 

navigation, menu control or authentic depth blurring in 3D and 

light-fields. Also conceivable is the verification of embedded 

hints or warning alerts by monitoring gazing and length of 

stay. 

At present, only conventional camera-based eye-tracking 

systems are used. However, due to the technical conditions, 

these systems can only be conditionally integrated into Head-

Mounted Devices. Infrared diodes and camera technology can 

only be positioned directly at or below the eye, which forces a 

wider mounting depth of the displays. Additional to the 

increasing weight and power consumption, this construction 

also develops heat, which has to be exhausted and a cooling 

system has to be provided. This is a main problem on closed 

HMDs, such as VR goggles. Therefore, an eye-tracking 

system has to be developed which is not based on camera 

technology, but is equally measurable and can be installed 

more flexibly in HMDs. 

C. EOG and Ocular Artefacts in EEG 

The principle of electrooculography (EOG) - and thus the 

ocular artefacts in the EEG signal - is based on the electric 

dipole of the eyeball (bulb), in which the cornea is positively 

and the retina negatively charged (corneo-retinal standing 

potential, Fig. 1). The electric field, which can be measured by 

electrodes around the eye, changes by the movement of the 

bulb [15]. The voltage for horizontal and vertical eye 

movements is 16μV respectively 14μV per one degree of gaze 

angle and is nearly linear for the entire viewing range of ± 50° 

horizontally and ± 30° vertically [16]. 

In the past, the EOG signal has only been exploited in 

niche areas. Kumar et al. [17] used the EOG signal to control 

applications by means of eye movements. Similarly, 

Yamagishi et al. [18] detect horizontal and vertical eye 

movements to control writing aids. However, they focused on 

people with physical limitations and used electrode positions 

above and below the eyes to record the signal. 

In electroencephalography, ocular artefacts are used to 

diagnose sleep phases for clinical and physiological purposes. 

Thus, Mohammadie et al. [19] used the EOG components in 

the EEG signal to distinguish rapid eye movement (REM), 

non-rapid eye movement (NREM), and awake status. Outside 

of sleep research, ocular artefacts are seen as interfering 

signals, that adversely affect brain activity studies [20]. 

EOG signals are also perceived as interfering signals in 

Brain-Computer technologies. Maddirala et al. [21] used 

combined techniques to remove ocular artefacts from the EEG 

signal. However, ocular artefacts in the EEG signals have to 

the knowledge of the authors never been used to control 

applications (BCI). 

III. METHODOLOGY AND RESEARCH QUESTION 

At the core of our approach lies the insight that an 

electroencephalogram not only captures brain activities of 

thought, expectations and emotions. Rather, these values are 

superimposed by other signals, for instance from power 

networks, radio waves or light flashes. In addition to such 

external factors, the EEG also captures internal factors. In 

particular, these can be the movement of one’s nose, mouth 

throat, one’s heartbeat or the movement of one’s eyes. 

In a first experiment, extreme positions of the eyes are 

analyzed in horizontal (left, right) and vertical (top, bottom) as 

well as neutral (centered) direction. Extreme eye positions, 

which have to be consciously executed, can then be used to 

switch binary states. The approach of this research work is to 

determine, whether EOG can be extracted from the EEG and 

whether the extracted signal correlates with the position of the 

eyes. 

A second contribution are the findings of 

electrooculography, where eye movements are measured via 

electrodes directly next to the eyes on the nose, forehead and 

temple. The subsequently analyzed electrical potential, which 

is also the cause of the ocular artefacts in the EEG signal, 

provides information about the position and movement of the 

eye. This method approximates the accuracy of camera-

assisted systems and is mainly used in medical applications. 

Brain-Computer Interfaces use EEG signals to control 

applications. The respective processing pipeline steps through 

five stages: It starts with the data acquisition, leads to the 

classification (machine learning) via filtering and feature 



 
Fig. 2.  Subject and environmental conditions on the first (left) and seccond 

(right) session. 
 

evaluation and arrives at controlling the application. An 

evaluation of the application feedback might enforce an 

improvement of one or any of those steps. 

IV. MATERIAL AND METHOD 

A. Subjects and Environmental Condition 

A single 38 years old male person is engaged in this 

experiment. He is healthy and had no significant head injuries 

or brain surgery in the past. There is a slight visual weakness 

of -1.0 diopters on the left eye and -0.75 diopters on the right 

eye. A pair of glasses is worn during the experiment. 

The test environment is a room at daylight with a large 

window measuring 1.25m x 3.00m (height x width) at the 

back of the workplace. Placed on an office desk with a height 

of 72cm is a 27-inch monitor, the display center point of 

which is 30cm from the table top. To the left of the monitor is 

an Apple Mac Mini as a computing unit, to the right an IP-

phone. 

The subject is sitting upright and relaxed on an office chair 

at the workplace in front of the monitor, the head tilted 

slightly downwards so that the distance from face to monitor 

is about 70cm and the eyes look at a height of about 40cm 

from the table. This corresponds to a viewpoint of 10cm above 

the monitor center. In the second recording situation, the 

subject is at the same place, but turns 90 degrees to the left 

and looks at a white wall at a distance of 40cm with the head 

straight forward (Fig. 2). 

 

B. Experimental Design  

In the first session results of four different gaze targets are 

captured: Right, left up, down are displayed in a given 

sequence. After the subject has positioned himself, he starts 

the recording with a mouse click. At the same time, he 

observes the session, which is displayed directly in the central 

view field. After the start, he waits for two seconds, looking at 

the screen’s center to record a baseline. Then the eyes are 

moved as fast and far (full swing) as possible to the 

appropriate direction. After one second, the eyes quickly 

return to the central starting position. Finally, two seconds 

later, the recording is stopped. This procedure is repeated ten 

times per action, which results in 40 recordings. 

 
Fig. 3.  EEG-headset Emotiv EPOC (left) and its electrodes positions (right). 
 

Two other actions (straight-ahead and closed eyes) will be 

included in a second session on another day, but under the 

same conditions. This time, a second person (operator) starts 

and stops the session. The operator waits until the subject has 

positioned himself and the subject looks straight ahead at the 

wall without blinking. The operator then starts the recording. 

After five seconds, the recording is stopped and the test person 

relaxes. The sequence is repeated ten times. After this, ten 

more records follow, where the subject closes his eyes. He 

first looks at the wall and closes the eyelids. Only then the 

recording is started. Meanwhile, the test person does not try to 

move or twitch his eyes. A total of 20 additional data records 

are created. 

C. Experimental Devices and Data Recording 

An Emotiv EPOC (Fig. 3, left) is available for data 

acquisition. It has 14 non-invasive wet electrodes (AF3, F7, 

F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) and two 

reference electrodes (CMS, DRL). All electrodes are applied 

to the frontal, temporal and occipital cortex according to the 

international 10-20 system (Fig. 3, right). The integrated 

acceleration sensor is not used. The EEG device operates with 

an internal sampling rate of 2048Hz and a resolution of 14Bit. 

Before the transmission, the EEG signal is sampled down to 

128Hz and then transmitted via Bluetooth to a USB dongle, 

which is connected to the recording computer. 

The Emotive Control Panel software ensures that the 

Emotive EPOC is connected to the computer, the signal 

strength is sufficient and all the electrodes are in good contact. 

The RAW signal is recorded with the OpenSource software 

OpenViBE. For this purpose, the OpenViBE Acquisition 

Server v1.1.0 is started with the driver for the Emotive EPOC, 

the connection port 1024 selected and a number of 32 samples 

per block is sent. All data from the 14 channels are stored in a 

CSV file and the electroencephalogram is displayed 

simultaneously by means of a display window. 

D. Pre-processing and Filtering 

Each of the ten records of a specific gazing direction (e.g. 

to the right) are imported individually into MATLAB 2016a 

via its import wizard and grouped into matrices of the type 

Number. Subsequently, the vectors are shortened to the 

smallest common length, since not all records could be  



 
Fig. 4.  Example of a pre-processed time signal of the four electrodes F7, F8, 

T7 and T8 of the eighth record gazing to the right. The yellow area marks the 
time, when the user moved quickly the eyes to the extreme right position and 

after one second back to the center. 

 
Fig. 5.  Time signal (left) and frequency spectrum (right) of a centered gaze 

(red, y) and an extreme eye position (blue, x).  
 

stopped precisely at five seconds. The shortening does not 

affect the quality of the data, because the most important data, 

i.e. the movement of the eye, does not occur at the end of the 

recording during the first recording sequence and the second 

recording sequence is a continuous viewing direction. 

All records are passed through the MATLAB function 

detrend() to remove continuous linear displacements on the 

amplitude axis and to normalize the values. Thereafter, a notch 

filter at 50Hz and a Butterworth low-pass filter with a cut-off 

frequency at 13Hz and an order of five are applied. In 

addition, a fast Fourier transform (FFT) is used to analyze the 

frequency spectrum. 

E. Feature Extraction and Classification 

The features are extracted manually by viewing the time 

signals visualized as graphs.  We first concentrate on the four 

measuring points F7, F8, T7 and T8 (Fig. 4), since these points 

are more likely integrated into HMDs. In a separate vector, the 

time signals are given a numeric action-ID, namely 0,1,2,3,4,5 

and 6 for the viewing directions not defined, right, left, up, 

down, centered with open eyes and centered with closed eyes. 

To prepare the classification, all the selected data sets 

(vectors) from the feature extraction are combined in a 

specific and unchanged sequence and the resulting matrix is 

converted into a table. The classification is done by the 

MATLAB Classification Learner Toolbox, with the values of 

the four measuring points F7, F8, T7 and F8 as predictors and 

 
Fig. 6.  Overlaying all ten time signals of the electrodes F7, F8, T7 and T8 
with the eye position to the extreme right. In this case, the amplitudes on the 

left hemisphere are negative and on the right hemisphere are positive. 
 

 
Fig. 7.  Confusion matrix of the fine KNN with all data and a holdout of 10% 

done by the MATLAB 2016a Classification Learner Toolbox. 
 

the action-ID as a response. A total of 156 combinations of 

classifiers (tree, discriminant, K-Nearest-Neighbor, Ensemble, 

Support-Vector-Machine), cross validation (2, 5, 10, 15, 20, 

30) and holdouts (10%, 20%, 25%) are tested (Table I). 

V. RESULTS 

The signals show clear negative and positive amplitude 

deflections, consciously carried out eye movements for the 

duration of one second (Fig. 4, Fig. 6). They are also clearly 

recognizable even in the case of poor signal quality, and differ 

in their characteristics depending on the region of the brain. 

Measured to the basic potential of the EEG signal, the 

magnitudes reach values of up to 300μV. The temporal offset 

of up to 0.5s is due to the reaction time of the subject. The 

reduction of the records from originally 5.0s to 4.5s is due to 

data preprocessing. 

 



TABLE I.  RESULTS OF TESTED CLASSIFIER SETTINGS 

 
Classifier K-Fold Holdout 

Type 2 5 10 15 20 30 10% 20% 25% 

Tree Complex Tree 79.6 79.8 80.1 80.0 79.9 80.8 80.9 79.6 79.2 

 Medium Tree 70.5 70.2 70.3 70.2 70.2 70.3 69.8 70.1 69.9 

 Simple Tree 58.3 58.2 58.2 58.3 58.3 58.3 58.4 58.1 57.9 

 Linear Discriminant 50.4 50.4 50.4 50.4 50.4 50.4 50.3 50.3 50.3 

 Quadratic Discriminant 40.7 40.8 40.8 40.8 40.8 40.9 40.7 40.9 41.5 

KNN Fine KNN 95.3 96.2 96.3 96.3 96.3 96.3 96.6 96.3 96.0 

 Medium KNN 90.8 92.8 93.2 93.3 93.4 93.4 93.2 92.8 92.2 

 Coarse KNN 82.5 84.3 84.7 84.8 84.9 85.0 85.1 84.0 83.9 

 Cosine KNN 85.5 87.3 87.9 88.1 88.2 88.2 87.9 86.7 86.8 

 Cubic KNN 90.9 92.8 93.2 93.2 93.4 93.4 93.2 92.7 92.7 

 Weighted KNN 94.4 95.2 95.4 95.4 95.5 95.5 95.5 95.3 95.0 

Ensemble Boosted Trees 71.4 71.5 71.2 71.2 71.2 71.2 70.7 70.9 71.2 

 Bagged Trees 93.5 94.8 95.1 94.9 95.2 95.1 95.2 94.8 94.6 

 Subspace Discriminant 49.7 49.7 49.8 49.5 49.6 49.6 49.1 49.6 49.6 

 Subspace KNN 81.5 81.0 80.7 81.0 80.5 80.9 79.4 80.8 78.8 

 RUSBoosted Trees 66.2 66.8 66.0 66.5 66.2 66.0 66.2 64.4 65.2 

SVM Linear SVM - 58.7 - - - - - - 58.4 

 Quadratic SVM - 69.5 - - - - - - 75.3 

 Cubic SVM - 63.1 - - - - - - 38.6 

 Fine Gaussian SVM - 87.3 - - - - - - 87.3 

 Medium Gaussian SVM - 79.1 - - - - - - 79.2 

 Coarse Gaussian SVM - 62.1 - - - - - - 62.7 

 

There is an interesting correlation between the direction 

of view and the amplitude deflections of the hemispheres. 

They behave in a binary way. If the view goes to the right, 

the peak is positive in the right hemisphere and negative in 

the left hemisphere (Fig. 6), on the look to the left the peaks 

in the hemispheres are the other way round. If the eyes 

move up and down, the peaks in both hemispheres are 

positive respectively negative. So the direction of view can 

be detected with one measure point on each half of the head 

only. 

Splitting the filtered EEG signal into the individual EEG 

frequency bands, the main components of the ocular 

artefacts appear in the range of the low-frequency delta 

waves from 0Hz to 4Hz. Further signal peaks can be 

measured in the range of theta waves (4Hz-8Hz) and alpha 

waves (8Hz-13Hz). This is consistent with the findings from 

EOG. Correspondingly, the FFT of the data confirms this. 

There are high values on the low frequencies from 0Hz up 

to 4Hz and more on the frequency pairs 6Hz/7Hz, 

9Hz/10Hz and 12Hz/13Hz (Fig. 7). The very high peak at 

0Hz turns out to be a DC offset. 

All algorithms of type K-Nearest-Neighbor (KNN) 

perform well with a positive recognition rate of over 80%. 

The Fine KNN and a holdout of 10% achieved the highest 

value of 96.6%. Complex trees, bagged trees and subspace 

KNN show the same ratio. Among the Support Vector 

Machines (SVM), the Fine-Gaussian SVM method is at a 

comparable level with more than 87.3% (Table I). The 

methods according to the principle of discriminants with a 

maximum true-positive-rate of 50.4% are unsatisfying. The 

computing time of the classifiers takes from at least 2s 

(decision trees, KNN) up to 3.5h (SVM). 
Centered eye positions are very well recognized with 

97% (open eyes) and 96% (closed eyes). The initial position 
0 (not defined), which is also centered, is similarly well 
predicted at 98%. Horizontal eye movements are correctly 
classified with 87% (right) and 94% (left), vertical with 92% 
(up) and 91% (down). Viewing directions against one 
another are very well distinguished with an error rate of less 
than 1%. There is a small range false-negative-rate of 5% to 
8%, when predicting the eye position 0 (not defined) instead 
of one of the four extreme eye positions 1 (right), 2 (left), 3 
(up) or 4 (down) (Fig. 7). Correspondingly, the area under 
curve of the receiver operation characteristic curve is 0.97. 

VI. DISCUSSION 

With regard to prevent noise on the EEG-signal, 

computers, mobile phones, telephones and other sources 

should be avoided in the immediate environment. The 

monitor from the first session also interfered with the EEG 

signal in the high frequency range (50Hz). It is also 

necessary to investigate the extent to which the electronics 

in HMDs affect the EEG signal and how the light of 

displays affects the ocular artefacts. 

A low-pass filter is not suitable, since frequency 

components are present at 0Hz (DC offset) and 0.5Hz, 

which are not caused by ocular artefacts. A band-pass filter 

from 0.5Hz to 13.0Hz seems more appropriate. Due to the 

necessary rate of change, it is recommended to combine a 

high-pass filter with a cut-off frequency at 0.25Hz and a 



low-pass filter with a cut-off frequency at 15.0Hz. 

Increasing the filter order may cause a temporal shift, which 

is not usable for real-time applications. 

The feature extraction was done by hand, which caused 

an inaccuracy in detection of the eye position. Thus, the 

feature extraction has to be automated, e.g. via peak 

detection or a signal (action-ID) should be provided by the 

sequence. In addition, the eye positions and eye movements 

should be monitored and verified by a third-party system 

(e.g. camera-based eye-tracking). Furthermore, a proportion 

of undefined states (eye position 0) has to be avoided. 
KNN has the best performance. However, KNN does not 

build classification models, but the classification is done by 
matching the input data with instances from training data one 
by one. Neither a windowing nor a batch processing for 
observing trends was used, which could mitigate overfitting 
and improve performance. To prevent an overfitting of the 
classifier, several data sets from different subjects have to be 
taken and proven by a control group. The consideration of 
frequency components as well as the first derivation as a 
trigger can further improve the true-positive rate. Potential 
time delays of ocular artefacts on different measure points 
should be analyzed, too. 

VII. CONCLUSION AND FURTHER STEPS 

In this paper, the approach of a new EEG-based eye-

tracking System is presented, which is based on the findings 

of EOG. Experimental results show that extreme eye 

positions to the left, right, up and down as well as the 

centered eye position can be detected with four measuring 

points and a true-positive rate of 96,6%. To distinguish the 

viewing direction, at least one corresponding measuring 

point per hemisphere is required, which allows simple and 

flexible integration in Head-Mounted Devices. 
In the future, we want to extend our preliminary tests to 

large test groups. This will allow us to train generalized 
classifiers based on potentially diverse data sets. In addition, 
we want to test the applicability of our new tracking 
approach under real-time and under different lighting 
conditions. 
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