
The Game of Flow - Cellular Automaton-based Fluid Simulation
for Realtime Interaction

Christian Heintz, Moritz Grunwald, Sarah
Edenhofer, Jörg Hähner

University of Augsburg

Sebastian von Mammen
University of Würzburg

ABSTRACT
In this paper, we present a realtime fluid simulation based on cellular
automata (CAs). The main goal is to demonstrate the performance
and extensibility of this approach. To show this, we created a fluid
simulation and extended it by simulating different kinds of fluids at
the same time. With this fluid-to-fluid interaction we can simulate
effects like oil floating on water with a focus on short computation
time. This makes the simulation interesting for interactive simula-
tions and games in VR. To show the potential of our simulation we
created a small VR game with promising results: a high framerate
of 100 FPS for a CA running on the CPU with 1763 cells due to
parallelization and optimization.

KEYWORDS
cellular automaton, fluid simulation, cell grid, realtime

1 FLUID SIMULATIONS
The simulation of fluids is a relevant part of physics engines and
used by the movie and video games industry. The latter is faced by a
great challenge: Games and interactive simulationsmust be realtime
capable. For regular desktop computers, rates of 60 frames per
second and more were deemed suitable [1]. For virtual reality (VR)
applications which track the user’s head orientation and movement,
consistently achieving 90 frames per second is the current, broadly
understood standard. Computations that involve a large number
of interacting parts tend to significantly impact the latency. There
are two general types of fluid simulations: grid-based, where you
divide the simulation-space into cells and each cell has a fixed
position and contains values such as fluid concentration or velocity
(e.g. in [2]), and particle-based, where the fluid consists of large
numbers of moving particles that influence each other (e.g. with
the FleX Engine). In contrast to other realtime fluid engines, we
utilised cellular automata (CAs), a computational representation
originally conceived to retrace the foundational mechanisms of
cause and effect to lead to the emergence of life [7]. The basic data
structure of a CA is a multi-dimensional discrete grid whose cells
can have different states. Changes are introduced to each cell based
on its own and its neighbours’ current states. An according set of
state-changing rules that is applied at each simulation step and
the initial configuration of a CA determine the pattern it produces
over time. Adding new or changing existing rules of the set allow
for an easy extension of the CA. We utilised a three-dimensional
CA to create a fluid simulation that encodes physical and chemical
properties in the cells’ states.
Related to our approach are Smooth Particle Hydrodynamics (SPH),
a widespread particle-based fluid simulation approach. Müller at
al. presented an extension of the SPH method in 2005 [5]. It is
based on the idea that numerous virtual particles pull and push

each other to satisfy a density constraint, allowing for interaction
between different fluids and temperature-dependent phase tran-
sitions of fluids. Tweaking SPH and pushing its computations to
the GPU promises sufficient performance also for VR applications.
However, discretisation of the underlying particles and resolving
the multitude of neighbourhood-relations among them are costly
processing steps. Another costly step is rendering SPH-driven fluids
by reconstruction of surfaces. Screen Space Fluid Rendering [3], for
instance, yields good visual results but is based on post-processing
effects and, therefore, has to be executed twice in VR, one time for
each eye. Another way is to simplify the simulation like in Height
Field Fluids [6], where a 2D array of height values is used as the
underlying representation to simulate the surface dynamics of large
water bodies. Looking at realtime-capable, grid-based approaches
to fluid simulation that also incorporate (imaginative) chemical
reactions, a recent example has been implemented in the greatly
successful Indie-gameMinecraft1. It is a voxel-based game in which
water, lava and heat is simulated by means of CAs. If lava comes
into contact with water, it turns into obsidian or cobblestone. If
there is some wood near a pond of lava, the wood will start to burn
and fire will start spreading. In Section 2, we detail our simulation
approach. In Section 3, our results are presented and the paper is
concluded.

2 THE GAME OF FLOWMODEL
If one pours fluids with different densities into a single container,
they arrange themselves in layers according to their specific densi-
ties: the fluid with the highest density drops to the bottom, whereas
lower densities float on top. When simulating fluids, viscosity plays
a vital role. It is a measure for tenacity and determines the speed
of the fluids’ flows. Both density and viscosity are basic factors of
our simulation and both are influenced by temperature. In order
to plausibly retrace the effects of these interdependent factors at
an abstract level, we relinquish solving the physics equations and
establish a simple and intuitive system of CA update rules. In order
to account for different fluids and densities, the cells of our CA
store a continuous state variable and an associated type. In order
to manage the flow between cells, we provide storage space for
different fluid types. Each fluid type has one of n unique identifiers
(IDs), with 0 as the ID for the type of the lowest density and n − 1
of the highest density. The properties (viscosity and density), of
the fluid types are stored in global arrays and can be accessed via
their IDs. Each cell of the CA saves an array of size n to store the
local amount of units of each type. The maximal total amount of
each type per cell is restricted by a certain value. The totalled state
values of the CA need to stay constant (Rule of Constancy). Oth-
erwise, matter would either get lost or appear out of nowhere. In
1https://minecraft.net/, accessed 2017-09-14



order to comply with this requirement, any state changes to a cell,
whether additive or subtractive, need to keep a local equilibrium.
Simply said, it is only allowed to transfer cell state’ units instead of
generating or deleting them. As a result, when a cell’s update is cal-
culated, it can either pull in some units from its neighbours or push
some out. In our CA, fluids diffuse horizontally across the plane
(Rule of Diffusion). This is realised by pushing equal amounts
of fluid to a cell’s neighbours. The actual amount is dependent on
the viscosity of a fluid type. The update function, which computes
the new amount of a fluid-type in a cell is computed as follows,
whereas A is the total amount of the current element in both cells,
V its current viscosity:

value = (A/2)



+V , if cell stores more than its neighbour
−V , otherwise

In order to account for gravity, we transfer liquid vertically depend-
ing on the fluids’ densities (Rule of Descent). We first merge the
amounts of each type of fluid in two cells that lie on top of one
another so we can distribute the amountaccording to their density.
In order to do that, we iterate through the merged amounts from
high to low density, adding as much as possible to the bottom cell
without it overflowing. When the bottom cell has reached the max-
imal capacity we add the rest of the merged amounts to the top cell.
In order to simulate gas, we allowed density values between (0,1).
Fluids with a density value within this range will cause its amount
to favour placement in the top cell, ultimately making it move in an
upwards direction. The amount of fluid of a given type (δ ) stored
in the bottom cell is: δ = Min(M − B,Min(D, 1) ∗A). Hereby, M is
the maximum volume a cell can hold until it is full, B the combined
volume of amounts of each fluid-type with higher density that are
already in the bottom cell, D being the element density and A being
the total amount of the current element in both cells.

The cellular automaton also calculates temperature spread. Each
cell holds a temperature value that represents the combined tem-
perature of each fluid in it in degree Celsius. A fraction of the
temperature of one cell will mix with the temperatures of the sur-
rounding cells depending on the amounts of fluids in each. The
amounts of the fluid-types act as weights when mixing the values.
Furthermore the flow direction also directly influences temperature
spread in a fashion that makes the temperature seem to be linked to
the cells content. If the cells temperature fulfils an specific element
dependent criteria, the element will change its state accordingly,
temperatures over 100◦C for example will cause water to evaporate
and turn into gas state.

CAs naturally work in parallel as each cell update is independent.
Therefore, we implemented GPU compute shaders to calculate these
parallel updates. For further optimization, we changed the update
cycle: In a CA, every cell changes its state individually depending on
the state of its neighbouring cells during each update. We changed
this individual cell update to a dual-cell update cycle. During a
dual-cell update, two neighbouring cells are updated in one step.
By doing this, we can save about half of the calculations needed
to update each cell, reusing the results calculated for one cell for
the neighbouring cell instead of both having to calculate the same
equation individually.

Figure 1: The time was measured with the Profiler of the
Unity Game Engine.

3 EVALUATION
In addition to the GPU version of our CA, we also implemented a
CPU version to underline the effect of parallelization on computa-
tion time. Besides a voxelised-visualisation, we used the marching
cubes algorithm [4], because it’s usually used for fluid rendering
and needs the lattice shaped data we provide. It is not surprising
that the simulation runs faster on the GPU, but it is still interesting
to see the difference in performance. Figure 1 shows the results.
One can see that the GPU version is not only much faster than the
CPU version but it also scales better. The computation time on the
GPU is so small that it scarcely affects the framerate and therefore
guarantees realtime capability even for VR applications. Clearly,
the computation costs depend on the size of the CA. The size, in
turn, depends on the number of cells as well as the number of dif-
ferent elements and is limited by RAM (CPU) and VRAM (GPU).
Depending on the type of visualisation and hardware, it is possible
to have 1763 cells at constant 100 FPS (on AMD R9 255 OEM). The
project of our CA model for simulating plausible fluid dynamics in
a three-dimensional lattice grid can be found on GitHub2).

REFERENCES
[1] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. 2011. Real-time rendering.

CRC Press.
[2] Nuttapong Chentanez and Matthias Müller. 2011. Real-time Eulerian Water

Simulation Using a Restricted Tall Cell Grid. In ACM SIGGRAPH 2011 Papers.
ACM, New York, NY, USA, Article 82, 82:1–82:10 pages.

[3] Simon Green. 2010. Screen space fluid rendering for games. In Proceedings for
the Game Developers Conference.

[4] William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug.
1987), 163–169.

[5] Matthias Müller, Barbara Solenthaler, Richard Keiser, and Markus Gross. 2005.
Particle-based Fluid-fluid Interaction. In Proceedings of the 2005 ACM SIG-
GRAPH/SCA. ACM, New York, NY, USA, 237–244.

[6] Matthias Müller-Fischer. 2008. Fast water simulation for games using height
fields. In Proceedings of the Game Developer’s Conference.

[7] John von Neumann and Arthur W. Burks. 1966. Theory of self-reproducing au-
tomata. University of Illinois Press, Urbana and London.

2https://github.com/Frager/CA-Fluid-Simulation

2


	Abstract
	1 Fluid Simulations
	2 The Game of Flow Model
	3 Evaluation
	References

